🚀 AI Scalability & Infrastructure

Build and manage scalable AI systems from prototype to production at enterprise scale

🎯 Why AI Scalability Matters

📈 Business Growth

Scale from serving hundreds to millions of users without rebuilding your infrastructure.

100x
User Growth
10ms
Latency Target

💰 Cost Efficiency

Optimize infrastructure costs while maintaining performance as you scale.

  • 70% reduction in per-request cost
  • Elastic scaling for demand spikes
  • Resource utilization optimization
  • Spot instance strategies

🛡️ Reliability

Maintain high availability and performance under increasing load.

✓ 99.9% Uptime SLA
✓ Auto-failover

📊 Scalability Calculator

Enter your growth projections to calculate infrastructure requirements...

📊 Real-World Scale

Company AI System Scale Infrastructure Key Challenge
OpenAI ChatGPT 100M+ users 10,000+ GPUs Inference optimization
Google Search AI 8.5B queries/day Custom TPUs Sub-second latency
Netflix Recommendations 230M subscribers AWS + Edge Personalization at scale
Uber ETA Prediction 5M+ trips/day Hybrid cloud Real-time inference
Meta Feed Ranking 3B+ users Custom hardware Global distribution

🎯 Scaling Challenges

Challenge 1: Model serving latency increases exponentially with model size and request volume.
Challenge 2: Data pipeline bottlenecks emerge at scale, requiring distributed processing.
Solution: Implement horizontal scaling, caching, and edge deployment strategies.

📚 Scalability Fundamentals

🏗️ Scalable Architecture Components

Load Balancer

Traffic Distribution

API Gateway

Request Management

CDN

Edge Caching

Model Servers

Inference Engines

Feature Store

Feature Serving

Cache Layer

Redis/Memcached

Data Lake

Raw Storage

Message Queue

Async Processing

Monitoring

Observability

📐 Scaling Dimensions

Vertical Scaling (Scale Up)

Increase resources of single machine

Vertical Scaling Example
# AWS EC2 Instance Scaling
# From: t3.medium (2 vCPU, 4 GB RAM)
# To:   p3.8xlarge (32 vCPU, 244 GB RAM, 4 V100 GPUs)

# Pros:
# - Simple implementation
# - No code changes needed
# - Good for memory-intensive models

# Cons:
# - Hardware limits
# - Single point of failure
# - Expensive at scale

Horizontal Scaling (Scale Out)

Add more machines to the pool

  • Distributed inference
  • Load balancing
  • Auto-scaling groups
  • Kubernetes pods
Preferred for production systems

Edge Scaling

Deploy models closer to users

Latency Reduction

80% faster response time

⚡ Performance Metrics

Metric Description Target Measurement
Throughput Requests per second > 1000 RPS Load testing tools
Latency Response time < 100ms P99 APM tools
Availability Uptime percentage 99.9% Monitoring systems
Utilization Resource usage 60-80% Cloud metrics
Error Rate Failed requests < 0.1% Log analysis

🔧 Infrastructure Options

Infrastructure Comparison Tool

Select deployment and workload types to see recommendations...

💾 Storage & Data Management

Hot Storage

Frequently accessed data

SSD, Redis, DynamoDB
  • < 10ms access
  • High cost/GB
  • Limited capacity

Warm Storage

Occasional access

HDD, RDS, MongoDB
  • 10-100ms access
  • Medium cost
  • Good balance

Cold Storage

Archive & backup

S3 Glacier, Tape
  • Minutes-hours access
  • Very low cost
  • Unlimited capacity

🔄 Common Scalability Patterns

🎯 Model Serving Patterns

Scalable Model Serving Architecture
import torch
import redis
from fastapi import FastAPI
from pydantic import BaseModel
import asyncio
import numpy as np

class ScalableModelServer:
    def __init__(self, model_path, cache_ttl=3600):
        self.model = self.load_model(model_path)
        self.cache = redis.Redis(host='localhost', port=6379)
        self.cache_ttl = cache_ttl
        self.request_queue = asyncio.Queue()
        self.batch_size = 32
        self.batch_timeout = 0.1  # 100ms
        
    def load_model(self, path):
        """Load model with optimization"""
        model = torch.jit.load(path)
        model.eval()
        
        # Optimization techniques
        if torch.cuda.is_available():
            model = model.cuda()
            model = torch.jit.optimize_for_inference(model)
        
        return model
    
    async def batch_inference_worker(self):
        """Process requests in batches for efficiency"""
        while True:
            batch = []
            futures = []
            
            # Collect batch
            try:
                # Wait for first request
                req, future = await self.request_queue.get()
                batch.append(req)
                futures.append(future)
                
                # Collect more requests up to batch_size
                deadline = asyncio.get_event_loop().time() + self.batch_timeout
                while len(batch) < self.batch_size:
                    remaining = deadline - asyncio.get_event_loop().time()
                    if remaining <= 0:
                        break
                    
                    try:
                        req, future = await asyncio.wait_for(
                            self.request_queue.get(), 
                            timeout=remaining
                        )
                        batch.append(req)
                        futures.append(future)
                    except asyncio.TimeoutError:
                        break
                        
            except Exception as e:
                continue
            
            # Process batch
            if batch:
                try:
                    results = await self.process_batch(batch)
                    for future, result in zip(futures, results):
                        future.set_result(result)
                except Exception as e:
                    for future in futures:
                        future.set_exception(e)
    
    async def process_batch(self, batch):
        """Process a batch of requests"""
        # Check cache for any cached results
        cache_keys = [self.get_cache_key(req) for req in batch]
        cached_results = self.cache.mget(cache_keys)
        
        # Separate cached and uncached requests
        uncached_indices = []
        uncached_requests = []
        results = [None] * len(batch)
        
        for i, (cached, req) in enumerate(zip(cached_results, batch)):
            if cached:
                results[i] = self.deserialize(cached)
            else:
                uncached_indices.append(i)
                uncached_requests.append(req)
        
        # Process uncached requests
        if uncached_requests:
            # Stack inputs for batch processing
            batch_input = self.prepare_batch_input(uncached_requests)
            
            # Run inference
            with torch.no_grad():
                if torch.cuda.is_available():
                    batch_input = batch_input.cuda()
                batch_output = self.model(batch_input)
                batch_results = self.postprocess(batch_output)
            
            # Store results and cache
            for idx, req_idx in enumerate(uncached_indices):
                result = batch_results[idx]
                results[req_idx] = result
                
                # Cache result
                cache_key = cache_keys[req_idx]
                self.cache.setex(
                    cache_key, 
                    self.cache_ttl, 
                    self.serialize(result)
                )
        
        return results
    
    async def predict(self, request):
        """Async prediction with batching"""
        future = asyncio.Future()
        await self.request_queue.put((request, future))
        return await future
    
    def get_cache_key(self, request):
        """Generate cache key for request"""
        return f"model:{hash(str(request))}"
    
    def horizontal_scale(self, num_replicas):
        """Scale out with multiple model replicas"""
        replicas = []
        for i in range(num_replicas):
            replica = self.model.clone()
            if torch.cuda.is_available() and i < torch.cuda.device_count():
                replica = replica.to(f'cuda:{i}')
            replicas.append(replica)
        return replicas

# FastAPI application
app = FastAPI()
model_server = ScalableModelServer("model.pt")

class PredictionRequest(BaseModel):
    data: list

@app.post("/predict")
async def predict(request: PredictionRequest):
    result = await model_server.predict(request.data)
    return {"prediction": result}

# Start batch processing worker
@app.on_event("startup")
async def startup():
    asyncio.create_task(model_server.batch_inference_worker())

# Health check for load balancer
@app.get("/health")
async def health():
    return {"status": "healthy"}

🔄 Load Balancing Patterns

Load Balancer Simulator

Server 1
0%
Server 2
0%
Server 3
0%
Server 4
0%

Select a strategy and simulate traffic to see load distribution...

💾 Caching Strategies

Strategy Use Case Implementation Hit Rate
Result Caching Repeated predictions Redis/Memcached 60-80%
Feature Caching Expensive features Feature Store 40-60%
Model Caching Multiple versions Memory/Disk 90%+
Edge Caching Geographic distribution CDN 70-90%

🚀 Auto-Scaling Patterns

Reactive Scaling

Scale based on current metrics

Auto-scaling Config
# Kubernetes HPA
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: model-server-hpa
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: model-server
  minReplicas: 2
  maxReplicas: 100
  metrics:
  - type: Resource
    resource:
      name: cpu
      target:
        type: Utilization
        averageUtilization: 70
  - type: Resource
    resource:
      name: memory
      target:
        type: Utilization
        averageUtilization: 80
  - type: Pods
    pods:
      metric:
        name: request_latency
      target:
        type: AverageValue
        averageValue: "100m"

Predictive Scaling

Scale based on predicted demand

  • Time-series forecasting
  • Historical patterns
  • Event-driven scaling
  • ML-based prediction
Pre-warm instances before traffic spike

Scheduled Scaling

Scale based on known patterns

Mon-Fri 9AM
Scale Up
100 nodes
Weekends
Scale Down
20 nodes
Black Friday
Max Scale
500 nodes

🌐 Geographic Distribution

Multi-Region Architecture

US-East

Primary Region

EU-West

Secondary Region

Asia-Pacific

Edge Region

↕️ Cross-Region Replication ↕️

💻 Hands-On Practice

🎯 Capacity Planning Calculator

Plan Your Infrastructure

Enter your requirements to calculate infrastructure needs...

💰 Cost Optimization Tool

Optimize Your AI Infrastructure Costs

Configure your infrastructure to see cost optimization opportunities...

⚡ Performance Testing

Load Testing Script
import asyncio
import aiohttp
import time
import numpy as np
from dataclasses import dataclass
from typing import List
import matplotlib.pyplot as plt

@dataclass
class LoadTestResult:
    total_requests: int
    successful_requests: int
    failed_requests: int
    average_latency: float
    p50_latency: float
    p95_latency: float
    p99_latency: float
    throughput: float
    error_rate: float

class LoadTester:
    def __init__(self, endpoint: str, timeout: int = 30):
        self.endpoint = endpoint
        self.timeout = timeout
        self.latencies = []
        self.errors = []
        
    async def send_request(self, session: aiohttp.ClientSession, data: dict):
        """Send single request and measure latency"""
        start = time.time()
        try:
            async with session.post(
                self.endpoint,
                json=data,
                timeout=aiohttp.ClientTimeout(total=self.timeout)
            ) as response:
                await response.json()
                latency = (time.time() - start) * 1000  # ms
                self.latencies.append(latency)
                return True
        except Exception as e:
            self.errors.append(str(e))
            return False
    
    async def run_load_test(
        self,
        concurrent_users: int,
        requests_per_user: int,
        ramp_up_time: int = 0
    ):
        """Run load test with specified parameters"""
        print(f"Starting load test: {concurrent_users} users, {requests_per_user} requests each")
        
        # Reset metrics
        self.latencies = []
        self.errors = []
        
        # Create sample data
        sample_data = {"data": [1.0] * 100}  # Example input
        
        # Ramp up users gradually
        users_per_second = concurrent_users / ramp_up_time if ramp_up_time > 0 else concurrent_users
        
        start_time = time.time()
        
        async with aiohttp.ClientSession() as session:
            tasks = []
            
            for user in range(concurrent_users):
                # Add delay for ramp-up
                if ramp_up_time > 0:
                    await asyncio.sleep(user / users_per_second)
                
                # Create tasks for this user
                for _ in range(requests_per_user):
                    task = self.send_request(session, sample_data)
                    tasks.append(task)
            
            # Execute all requests
            results = await asyncio.gather(*tasks)
        
        total_time = time.time() - start_time
        
        # Calculate metrics
        return self.calculate_metrics(results, total_time)
    
    def calculate_metrics(self, results: List[bool], total_time: float) -> LoadTestResult:
        """Calculate performance metrics"""
        total_requests = len(results)
        successful_requests = sum(results)
        failed_requests = total_requests - successful_requests
        
        if self.latencies:
            latencies_array = np.array(self.latencies)
            metrics = LoadTestResult(
                total_requests=total_requests,
                successful_requests=successful_requests,
                failed_requests=failed_requests,
                average_latency=np.mean(latencies_array),
                p50_latency=np.percentile(latencies_array, 50),
                p95_latency=np.percentile(latencies_array, 95),
                p99_latency=np.percentile(latencies_array, 99),
                throughput=total_requests / total_time,
                error_rate=failed_requests / total_requests * 100
            )
        else:
            metrics = LoadTestResult(
                total_requests=total_requests,
                successful_requests=0,
                failed_requests=total_requests,
                average_latency=0,
                p50_latency=0,
                p95_latency=0,
                p99_latency=0,
                throughput=0,
                error_rate=100
            )
        
        return metrics
    
    def plot_results(self):
        """Visualize latency distribution"""
        if self.latencies:
            plt.figure(figsize=(12, 4))
            
            # Latency histogram
            plt.subplot(1, 3, 1)
            plt.hist(self.latencies, bins=50, edgecolor='black')
            plt.xlabel('Latency (ms)')
            plt.ylabel('Frequency')
            plt.title('Latency Distribution')
            
            # Latency over time
            plt.subplot(1, 3, 2)
            plt.plot(self.latencies)
            plt.xlabel('Request Number')
            plt.ylabel('Latency (ms)')
            plt.title('Latency Over Time')
            
            # Percentiles
            plt.subplot(1, 3, 3)
            percentiles = [50, 75, 90, 95, 99]
            values = [np.percentile(self.latencies, p) for p in percentiles]
            plt.bar([f'P{p}' for p in percentiles], values)
            plt.ylabel('Latency (ms)')
            plt.title('Latency Percentiles')
            
            plt.tight_layout()
            plt.show()
    
    async def find_breaking_point(self, max_users: int = 1000, step: int = 50):
        """Find system breaking point"""
        print("Finding system breaking point...")
        
        for users in range(step, max_users + 1, step):
            result = await self.run_load_test(users, 10, ramp_up_time=5)
            
            print(f"Users: {users}, Throughput: {result.throughput:.2f} RPS, "
                  f"P99 Latency: {result.p99_latency:.2f}ms, "
                  f"Error Rate: {result.error_rate:.2f}%")
            
            # Stop if error rate exceeds threshold or latency is too high
            if result.error_rate > 5 or result.p99_latency > 1000:
                print(f"Breaking point found at {users} concurrent users")
                return users
        
        return max_users

# Usage
async def main():
    tester = LoadTester("http://localhost:8000/predict")
    
    # Run standard load test
    result = await tester.run_load_test(
        concurrent_users=100,
        requests_per_user=50,
        ramp_up_time=10
    )
    
    print(f"\nLoad Test Results:")
    print(f"  Total Requests: {result.total_requests}")
    print(f"  Successful: {result.successful_requests}")
    print(f"  Failed: {result.failed_requests}")
    print(f"  Average Latency: {result.average_latency:.2f}ms")
    print(f"  P50 Latency: {result.p50_latency:.2f}ms")
    print(f"  P95 Latency: {result.p95_latency:.2f}ms")
    print(f"  P99 Latency: {result.p99_latency:.2f}ms")
    print(f"  Throughput: {result.throughput:.2f} RPS")
    print(f"  Error Rate: {result.error_rate:.2f}%")
    
    # Visualize results
    tester.plot_results()
    
    # Find breaking point
    breaking_point = await tester.find_breaking_point()

if __name__ == "__main__":
    asyncio.run(main())

🔍 Bottleneck Analyzer

Identify System Bottlenecks

Enter system metrics to identify bottlenecks...

📈 Scaling Decision Matrix

Scenario Symptoms Solution Implementation
High Latency P99 > 500ms Add model replicas Horizontal scaling
Memory Pressure OOM errors Larger instances Vertical scaling
GPU Underutilization < 50% GPU usage Batch processing Request batching
Network Bottleneck High network latency Edge deployment CDN/Edge servers
Cost Overrun Budget exceeded Spot instances Mixed instance types

🚀 Advanced Scalability Techniques

🎯 Model Optimization for Scale

Advanced Model Optimization
import torch
import torch.nn as nn
from torch.quantization import quantize_dynamic
import tensorrt as trt
import onnx
import onnxruntime as ort

class ModelOptimizer:
    def __init__(self, model, optimization_level='O2'):
        self.model = model
        self.optimization_level = optimization_level
        
    def quantize_model(self, calibration_data=None):
        """Quantize model to INT8 for faster inference"""
        if calibration_data:
            # Post-training quantization with calibration
            model_int8 = torch.quantization.quantize_dynamic(
                self.model,
                {nn.Linear, nn.Conv2d},
                dtype=torch.qint8
            )
        else:
            # Dynamic quantization
            model_int8 = quantize_dynamic(
                self.model,
                {nn.Linear},
                dtype=torch.qint8
            )
        
        # Measure speedup
        self.benchmark_speedup(self.model, model_int8)
        return model_int8
    
    def export_to_onnx(self, dummy_input, output_path="model.onnx"):
        """Export to ONNX for cross-platform deployment"""
        torch.onnx.export(
            self.model,
            dummy_input,
            output_path,
            export_params=True,
            opset_version=11,
            do_constant_folding=True,
            input_names=['input'],
            output_names=['output'],
            dynamic_axes={
                'input': {0: 'batch_size'},
                'output': {0: 'batch_size'}
            }
        )
        
        # Optimize ONNX model
        import onnx
        from onnxruntime.transformers import optimizer
        
        model = onnx.load(output_path)
        optimized_model = optimizer.optimize_model(
            model,
            model_type='bert',  # or your model type
            num_heads=12,
            hidden_size=768
        )
        
        onnx.save(optimized_model, output_path.replace('.onnx', '_optimized.onnx'))
        return output_path
    
    def tensorrt_optimization(self, onnx_path):
        """Optimize with TensorRT for NVIDIA GPUs"""
        logger = trt.Logger(trt.Logger.WARNING)
        builder = trt.Builder(logger)
        network = builder.create_network(
            1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
        )
        parser = trt.OnnxParser(network, logger)
        
        # Parse ONNX model
        with open(onnx_path, 'rb') as model:
            parser.parse(model.read())
        
        # Configure builder
        config = builder.create_builder_config()
        config.max_workspace_size = 1 << 30  # 1GB
        
        # Enable FP16 mode
        config.set_flag(trt.BuilderFlag.FP16)
        
        # Enable INT8 mode with calibration
        config.set_flag(trt.BuilderFlag.INT8)
        config.int8_calibrator = self.create_calibrator()
        
        # Build engine
        engine = builder.build_engine(network, config)
        
        return engine
    
    def model_pruning(self, sparsity=0.5):
        """Prune model weights for smaller size"""
        import torch.nn.utils.prune as prune
        
        for name, module in self.model.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                prune.l1_unstructured(
                    module,
                    name='weight',
                    amount=sparsity
                )
        
        # Fine-tune after pruning
        self.fine_tune_pruned_model()
        
        # Remove pruning reparameterization
        for name, module in self.model.named_modules():
            if isinstance(module, (nn.Linear, nn.Conv2d)):
                prune.remove(module, 'weight')
        
        return self.model
    
    def knowledge_distillation(self, student_model, temperature=3.0):
        """Train smaller student model from teacher"""
        criterion_kd = nn.KLDivLoss(reduction='batchmean')
        criterion_ce = nn.CrossEntropyLoss()
        optimizer = torch.optim.Adam(student_model.parameters())
        
        for epoch in range(num_epochs):
            for data, target in train_loader:
                # Teacher predictions
                with torch.no_grad():
                    teacher_output = self.model(data)
                
                # Student predictions
                student_output = student_model(data)
                
                # Distillation loss
                loss_kd = criterion_kd(
                    F.log_softmax(student_output / temperature, dim=1),
                    F.softmax(teacher_output / temperature, dim=1)
                ) * (temperature ** 2)
                
                # Student loss
                loss_ce = criterion_ce(student_output, target)
                
                # Combined loss
                loss = 0.9 * loss_kd + 0.1 * loss_ce
                
                optimizer.zero_grad()
                loss.backward()
                optimizer.step()
        
        return student_model
    
    def benchmark_speedup(self, original_model, optimized_model, num_runs=100):
        """Benchmark inference speedup"""
        import time
        
        dummy_input = torch.randn(1, 3, 224, 224)
        
        # Warmup
        for _ in range(10):
            _ = original_model(dummy_input)
            _ = optimized_model(dummy_input)
        
        # Original model timing
        start = time.time()
        for _ in range(num_runs):
            _ = original_model(dummy_input)
        original_time = time.time() - start
        
        # Optimized model timing
        start = time.time()
        for _ in range(num_runs):
            _ = optimized_model(dummy_input)
        optimized_time = time.time() - start
        
        speedup = original_time / optimized_time
        print(f"Speedup: {speedup:.2f}x")
        print(f"Original: {original_time:.3f}s, Optimized: {optimized_time:.3f}s")
        
        return speedup

# Multi-GPU Distributed Training
class DistributedTraining:
    def __init__(self, model, world_size):
        self.model = model
        self.world_size = world_size
        
    def setup(self, rank):
        """Setup distributed training"""
        import torch.distributed as dist
        
        dist.init_process_group(
            backend='nccl',
            init_method='env://',
            world_size=self.world_size,
            rank=rank
        )
        
        # Move model to GPU
        self.model = self.model.to(rank)
        
        # Wrap with DDP
        self.model = nn.parallel.DistributedDataParallel(
            self.model,
            device_ids=[rank],
            output_device=rank,
            find_unused_parameters=True
        )
        
    def train(self, rank, train_dataset):
        """Distributed training loop"""
        from torch.utils.data.distributed import DistributedSampler
        
        # Setup distributed sampler
        train_sampler = DistributedSampler(
            train_dataset,
            num_replicas=self.world_size,
            rank=rank
        )
        
        train_loader = torch.utils.data.DataLoader(
            train_dataset,
            batch_size=64,
            sampler=train_sampler,
            num_workers=4,
            pin_memory=True
        )
        
        optimizer = torch.optim.Adam(self.model.parameters())
        
        for epoch in range(num_epochs):
            train_sampler.set_epoch(epoch)
            
            for batch_idx, (data, target) in enumerate(train_loader):
                data, target = data.to(rank), target.to(rank)
                
                optimizer.zero_grad()
                output = self.model(data)
                loss = F.cross_entropy(output, target)
                loss.backward()
                optimizer.step()
                
                if batch_idx % 100 == 0 and rank == 0:
                    print(f'Epoch {epoch}, Batch {batch_idx}, Loss: {loss.item()}')

🌐 Edge Computing Architecture

Edge Deployment Strategy

  • Model compression for edge devices
  • Federated learning integration
  • Offline inference capability
  • Selective cloud offloading
Reduces latency by 10x for end users

Hybrid Cloud-Edge

Decision Flow
Simple Request → Edge Device
Complex Request → Cloud API

Edge Hardware Options

Device Performance Power
NVIDIA Jetson 472 GFLOPS 10W
Google Coral 4 TOPS 2W
Intel NCS2 1 TOPS 1W

🔧 Infrastructure as Code

Terraform Configuration for Scalable AI Infrastructure
# Terraform configuration for scalable AI infrastructure

provider "aws" {
  region = var.aws_region
}

# Variables
variable "environment" {
  default = "production"
}

variable "min_instances" {
  default = 2
}

variable "max_instances" {
  default = 100
}

# VPC and Networking
module "vpc" {
  source = "terraform-aws-modules/vpc/aws"
  
  name = "ai-platform-vpc"
  cidr = "10.0.0.0/16"
  
  azs             = ["${var.aws_region}a", "${var.aws_region}b", "${var.aws_region}c"]
  private_subnets = ["10.0.1.0/24", "10.0.2.0/24", "10.0.3.0/24"]
  public_subnets  = ["10.0.101.0/24", "10.0.102.0/24", "10.0.103.0/24"]
  
  enable_nat_gateway = true
  enable_vpn_gateway = true
  enable_dns_hostnames = true
}

# EKS Cluster for Container Orchestration
module "eks" {
  source = "terraform-aws-modules/eks/aws"
  
  cluster_name    = "ai-platform-cluster"
  cluster_version = "1.24"
  
  vpc_id     = module.vpc.vpc_id
  subnet_ids = module.vpc.private_subnets
  
  # Node groups for different workloads
  eks_managed_node_groups = {
    # CPU nodes for API servers
    cpu_nodes = {
      desired_capacity = 3
      max_capacity     = 10
      min_capacity     = 2
      
      instance_types = ["m5.2xlarge"]
      
      k8s_labels = {
        workload = "api"
      }
    }
    
    # GPU nodes for model inference
    gpu_nodes = {
      desired_capacity = 2
      max_capacity     = 20
      min_capacity     = 1
      
      instance_types = ["p3.2xlarge"]
      
      k8s_labels = {
        workload = "inference"
        gpu = "true"
      }
      
      taints = [
        {
          key    = "gpu"
          value  = "true"
          effect = "NO_SCHEDULE"
        }
      ]
    }
    
    # Spot instances for batch processing
    spot_nodes = {
      desired_capacity = 5
      max_capacity     = 50
      min_capacity     = 0
      
      instance_types = ["m5.large", "m5.xlarge", "m5.2xlarge"]
      capacity_type  = "SPOT"
      
      k8s_labels = {
        workload = "batch"
        spot = "true"
      }
    }
  }
}

# Redis for caching
resource "aws_elasticache_cluster" "model_cache" {
  cluster_id           = "ai-model-cache"
  engine              = "redis"
  node_type           = "cache.r6g.xlarge"
  num_cache_nodes     = 3
  parameter_group_name = "default.redis7"
  port                = 6379
  
  subnet_group_name = aws_elasticache_subnet_group.cache.name
  security_group_ids = [aws_security_group.cache.id]
}

# S3 for model storage
resource "aws_s3_bucket" "model_store" {
  bucket = "ai-platform-models-${var.environment}"
  
  versioning {
    enabled = true
  }
  
  lifecycle_rule {
    enabled = true
    
    transition {
      days          = 30
      storage_class = "INTELLIGENT_TIERING"
    }
    
    transition {
      days          = 90
      storage_class = "GLACIER"
    }
  }
}

# Application Load Balancer
resource "aws_lb" "api_lb" {
  name               = "ai-api-lb"
  internal           = false
  load_balancer_type = "application"
  security_groups    = [aws_security_group.lb.id]
  subnets           = module.vpc.public_subnets
  
  enable_deletion_protection = true
  enable_http2              = true
  enable_cross_zone_load_balancing = true
}

# Auto Scaling for ECS/EKS
resource "aws_autoscaling_policy" "scale_up" {
  name                   = "ai-scale-up"
  scaling_adjustment     = 2
  adjustment_type        = "ChangeInCapacity"
  cooldown              = 300
  autoscaling_group_name = module.eks.node_groups.gpu_nodes.asg_name
}

resource "aws_autoscaling_policy" "scale_down" {
  name                   = "ai-scale-down"
  scaling_adjustment     = -1
  adjustment_type        = "ChangeInCapacity"
  cooldown              = 300
  autoscaling_group_name = module.eks.node_groups.gpu_nodes.asg_name
}

# CloudWatch Alarms
resource "aws_cloudwatch_metric_alarm" "high_cpu" {
  alarm_name          = "ai-high-cpu"
  comparison_operator = "GreaterThanThreshold"
  evaluation_periods  = "2"
  metric_name        = "CPUUtilization"
  namespace          = "AWS/EKS"
  period             = "120"
  statistic          = "Average"
  threshold          = "75"
  alarm_description  = "This metric monitors cpu utilization"
  alarm_actions      = [aws_autoscaling_policy.scale_up.arn]
}

# Output important values
output "cluster_endpoint" {
  value = module.eks.cluster_endpoint
}

output "load_balancer_dns" {
  value = aws_lb.api_lb.dns_name
}

output "model_bucket" {
  value = aws_s3_bucket.model_store.id
}

📊 Advanced Monitoring & Observability

Metrics

  • Prometheus + Grafana
  • Custom metrics
  • Real-time dashboards

Logging

  • ELK Stack
  • Structured logging
  • Log aggregation

Tracing

  • Jaeger/Zipkin
  • Distributed tracing
  • Latency analysis

⚡ Quick Reference Guide

📋 Scalability Checklist

✅ Architecture

  • Microservices design
  • Stateless services
  • Load balancing
  • Caching strategy
  • Database sharding
  • Message queues

✅ Performance

  • Model optimization
  • Batch processing
  • Async operations
  • Connection pooling
  • CDN integration
  • Edge deployment

✅ Reliability

  • Health checks
  • Circuit breakers
  • Retry logic
  • Failover strategy
  • Backup systems
  • Disaster recovery

✅ Monitoring

  • Metrics collection
  • Log aggregation
  • Distributed tracing
  • Alerting rules
  • SLA tracking
  • Cost monitoring

📊 Key Formulas

Scalability Calculations
# Throughput
Throughput = Requests / Time

# Latency Percentiles
P99 = 99th percentile response time
P95 = 95th percentile response time
P50 = Median response time

# Capacity Planning
Required Instances = (Peak RPS × Latency) / Instance Capacity
With Redundancy = Required Instances × Redundancy Factor

# Cost Optimization
Cost per Request = (Infrastructure Cost / Total Requests)
ROI = (Revenue - Costs) / Costs × 100

# Availability
Availability = Uptime / (Uptime + Downtime) × 100
9s Availability:
  99% = 3.65 days downtime/year
  99.9% = 8.76 hours downtime/year
  99.99% = 52.56 minutes downtime/year
  99.999% = 5.26 minutes downtime/year

# Amdahl's Law (Parallel Speedup)
Speedup = 1 / ((1 - P) + P/N)
Where P = Parallel portion, N = Number of processors

# Little's Law
L = λ × W
Where L = Avg number in system, λ = Arrival rate, W = Avg time in system

🛠️ Tool Comparison

Category Tool Best For Scale
Orchestration Kubernetes Container orchestration Unlimited
Docker Swarm Simple deployment Medium
Apache Mesos Large clusters Very Large
Model Serving TensorFlow Serving TensorFlow models Large
TorchServe PyTorch models Large
Triton Inference Server Multi-framework Very Large
Monitoring Prometheus Metrics Large
Grafana Visualization Any
DataDog Full observability Enterprise

💡 Common Pitfalls

❌ Premature Optimization

Problem: Over-engineering before understanding needs

Solution: Start simple, measure, then optimize

❌ Ignoring Data Gravity

Problem: Moving large datasets is expensive

Solution: Process data where it lives

❌ Single Point of Failure

Problem: One component failure brings down system

Solution: Redundancy and failover mechanisms

📊 Cost Optimization Tips

Instance Optimization

• Use spot instances: 70% savings
• Reserved instances: 50% savings
• Right-sizing: 30% savings
• Auto-scaling: 40% savings

Storage Optimization

• Lifecycle policies
• Compression: 50-80% reduction
• Deduplication
• Tiered storage

Network Optimization

• CDN usage: 60% reduction
• Data transfer optimization
• Regional deployment
• Compression