πŸ€– AI Model Development Process

Master the complete lifecycle from training to deployment with evaluation and monitoring

🎯 Why Model Development Matters

🎯 Business Impact

Well-developed models directly translate to business value through improved accuracy, efficiency, and user satisfaction.

85%
Accuracy Improvement
3x
Faster Deployment

⚑ Development Velocity

Structured processes enable faster iteration, experimentation, and time-to-market for AI features.

  • Automated pipelines reduce manual work
  • Standardized evaluation speeds decisions
  • Version control enables rollbacks

πŸ›‘οΈ Risk Mitigation

Proper development processes prevent model failures, bias issues, and production incidents.

βœ“ Validation Prevents 90% of Issues
βœ“ Testing Catches Edge Cases

πŸ“Š Model Performance Calculator

Enter your model specifications to see performance estimates...

πŸ“ˆ Industry Benchmarks

Use Case Model Type Typical Accuracy Training Time Deployment Time
Fraud Detection XGBoost/Neural Net 95-99% 2-4 hours < 100ms
Recommendation Collaborative Filtering 80-90% (Precision@K) 4-8 hours < 50ms
NLP Sentiment BERT/Transformer 85-95% 8-24 hours < 200ms
Image Classification CNN/ResNet 90-98% 12-48 hours < 150ms

πŸš€ Success Stories

Spotify: Improved recommendation accuracy by 30% through iterative model development and A/B testing, resulting in 20% increase in user engagement.
Amazon: Reduced model training time by 90% using distributed training and automated hyperparameter tuning.

πŸ“š Model Development Fundamentals

πŸ”„ Development Lifecycle

Data Prep

Clean & Feature

β†’
Training

Model Fitting

β†’
Validation

Hyperparameter

β†’
Testing

Final Evaluation

β†’
Deployment

Production

πŸ“Š Core Components

1. Data Splitting

Train/Validation/Test Split
from sklearn.model_selection import train_test_split

# First split: separate test set
X_temp, X_test, y_temp, y_test = train_test_split(
    X, y, test_size=0.2, random_state=42, stratify=y
)

# Second split: separate validation set
X_train, X_val, y_train, y_val = train_test_split(
    X_temp, y_temp, test_size=0.25, random_state=42, stratify=y_temp
)

# Result: 60% train, 20% validation, 20% test
print(f"Train: {len(X_train)}, Val: {len(X_val)}, Test: {len(X_test)}")

2. Model Selection

Algorithm Use Case Pros
Linear/Logistic Baseline Fast, interpretable
Random Forest Tabular data No scaling needed
XGBoost Competitions High accuracy
Neural Networks Complex patterns Flexible

3. Training Process

Training Progress

Epoch 75/100 - Loss: 0.234 - Accuracy: 92.3%

Key Concepts: Epochs, Batch Size, Learning Rate, Loss Function

πŸ“ˆ Evaluation Metrics

Confusion Matrix Visualizer

Enter confusion matrix values to calculate performance metrics...

🎯 Common Metrics Explained

Classification Metrics

Accuracy: Overall correctness

(TP + TN) / Total

Precision: Positive prediction quality

TP / (TP + FP)

Recall: Coverage of positives

TP / (TP + FN)

F1-Score: Balance of precision/recall

2 * (Prec * Rec) / (Prec + Rec)

Regression Metrics

MAE: Average absolute error

mean(|y_true - y_pred|)

MSE: Squared error average

mean((y_true - y_pred)Β²)

RMSE: Root mean squared error

sqrt(MSE)

RΒ²: Variance explained

1 - (SS_res / SS_tot)

Business Metrics

Revenue Impact: $ generated

Cost Savings: $ saved

User Engagement: CTR, time spent

Churn Rate: Customer retention

NPS Impact: Satisfaction change

βš™οΈ Hyperparameter Tuning

Grid Search Example
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier

# Define parameter grid
param_grid = {
    'n_estimators': [100, 200, 300],
    'max_depth': [10, 20, None],
    'min_samples_split': [2, 5, 10],
    'min_samples_leaf': [1, 2, 4]
}

# Setup grid search
rf = RandomForestClassifier(random_state=42)
grid_search = GridSearchCV(
    estimator=rf,
    param_grid=param_grid,
    cv=5,  # 5-fold cross-validation
    scoring='f1_weighted',
    n_jobs=-1,  # Use all cores
    verbose=2
)

# Fit grid search
grid_search.fit(X_train, y_train)

# Best parameters
print(f"Best parameters: {grid_search.best_params_}")
print(f"Best score: {grid_search.best_score_:.4f}")

πŸ”„ Common Development Patterns

πŸ—οΈ Training Patterns

Transfer Learning

Leverage pre-trained models for faster development

Transfer Learning Setup
import torch
from transformers import AutoModel, AutoTokenizer

# Load pre-trained model
base_model = AutoModel.from_pretrained('bert-base-uncased')
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

# Freeze base layers
for param in base_model.parameters():
    param.requires_grad = False

# Add custom head
class CustomClassifier(torch.nn.Module):
    def __init__(self, base_model, num_classes):
        super().__init__()
        self.base = base_model
        self.classifier = torch.nn.Linear(768, num_classes)
        
    def forward(self, input_ids, attention_mask):
        outputs = self.base(input_ids, attention_mask)
        pooled = outputs.last_hidden_state[:, 0]  # [CLS] token
        return self.classifier(pooled)

model = CustomClassifier(base_model, num_classes=3)

Ensemble Methods

Combine multiple models for better performance

  • Bagging: Random Forest approach
  • Boosting: Sequential improvement
  • Stacking: Meta-learner combination
  • Voting: Simple majority/average
Ensembles typically improve accuracy by 2-5%

Cross-Validation

Robust evaluation through multiple splits

Fold 1 Train Train Train Train
Train Fold 2 Train Train Train

πŸ”§ Optimization Patterns

Hyperparameter Optimizer

Select algorithm and optimization method to generate a tuning plan...

πŸš€ Deployment Patterns

Pattern Description Use Case Pros Cons
Blue-Green Two identical environments Zero-downtime deployment Quick rollback Resource intensive
Canary Gradual rollout Risk mitigation Early issue detection Complex monitoring
Shadow Parallel execution Testing in production No user impact Double resources
A/B Testing Split traffic Performance comparison Statistical validation Longer deployment

πŸ“Š Monitoring Patterns

Model Monitoring Setup
import numpy as np
from scipy import stats
import logging

class ModelMonitor:
    def __init__(self, baseline_metrics):
        self.baseline = baseline_metrics
        self.alerts = []
        self.metrics_history = []
        
    def check_performance_degradation(self, current_metrics):
        """Monitor for performance drops"""
        degradation = {}
        
        for metric, baseline_value in self.baseline.items():
            current_value = current_metrics.get(metric)
            if current_value:
                # Calculate percentage change
                change = (current_value - baseline_value) / baseline_value * 100
                
                # Alert if significant degradation
                if metric in ['accuracy', 'precision', 'recall', 'f1']:
                    if change < -5:  # 5% degradation threshold
                        self.alert(f"{metric} degraded by {abs(change):.2f}%")
                        degradation[metric] = change
                        
        return degradation
    
    def check_data_drift(self, reference_data, current_data):
        """Detect distribution shifts using KS test"""
        drift_detected = {}
        
        for column in reference_data.columns:
            # Kolmogorov-Smirnov test
            ks_stat, p_value = stats.ks_2samp(
                reference_data[column], 
                current_data[column]
            )
            
            if p_value < 0.05:  # Significant drift
                drift_detected[column] = {
                    'ks_statistic': ks_stat,
                    'p_value': p_value
                }
                self.alert(f"Data drift detected in {column}")
                
        return drift_detected
    
    def check_prediction_distribution(self, predictions):
        """Monitor prediction distribution changes"""
        pred_stats = {
            'mean': np.mean(predictions),
            'std': np.std(predictions),
            'min': np.min(predictions),
            'max': np.max(predictions),
            'skew': stats.skew(predictions),
            'kurtosis': stats.kurtosis(predictions)
        }
        
        # Check for anomalies
        if abs(pred_stats['skew']) > 2:
            self.alert(f"High skewness in predictions: {pred_stats['skew']:.2f}")
        
        return pred_stats
    
    def alert(self, message):
        """Send alert for critical issues"""
        alert = {
            'timestamp': datetime.now(),
            'message': message,
            'severity': self.classify_severity(message)
        }
        self.alerts.append(alert)
        logging.warning(f"MODEL ALERT: {message}")
        
        # Trigger notifications (email, Slack, etc.)
        self.notify_stakeholders(alert)
        
    def classify_severity(self, message):
        """Classify alert severity"""
        if 'degraded' in message and any(x in message for x in ['10%', '15%', '20%']):
            return 'CRITICAL'
        elif 'drift' in message:
            return 'WARNING'
        else:
            return 'INFO'
    
    def generate_report(self):
        """Generate monitoring report"""
        return {
            'total_alerts': len(self.alerts),
            'critical_alerts': sum(1 for a in self.alerts if a['severity'] == 'CRITICAL'),
            'recent_alerts': self.alerts[-10:],
            'metrics_trend': self.analyze_trends()
        }

πŸ”„ Retraining Patterns

Scheduled Retraining

Fixed intervals (daily, weekly, monthly)

⏰ Every Sunday at 2 AM
  • Predictable resource usage
  • Simple to implement
  • May retrain unnecessarily

Trigger-Based Retraining

Retrain when conditions are met

πŸ“Š When accuracy < 85%
  • Efficient resource usage
  • Responds to actual needs
  • Requires monitoring

Continuous Learning

Online learning with streaming data

♾️ Real-time updates
  • Always up-to-date
  • Adapts to changes quickly
  • Complex implementation

πŸ’» Hands-On Practice

πŸ› οΈ Model Training Simulator

Configure and Train Your Model

Configure your model and dataset to simulate training...

πŸ“Š Model Evaluation Dashboard

Evaluate Model Performance

Accuracy
Precision
Recall
F1 Score
AUC-ROC
Loss

Select metrics to view detailed evaluation...

πŸ”§ Hyperparameter Tuning Lab

Automated Hyperparameter Tuning
import optuna
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score

def objective(trial):
    """Optuna objective function for hyperparameter optimization"""
    
    # Suggest hyperparameters
    params = {
        'n_estimators': trial.suggest_int('n_estimators', 50, 500),
        'max_depth': trial.suggest_int('max_depth', 3, 20),
        'min_samples_split': trial.suggest_int('min_samples_split', 2, 20),
        'min_samples_leaf': trial.suggest_int('min_samples_leaf', 1, 10),
        'max_features': trial.suggest_categorical('max_features', ['auto', 'sqrt', 'log2']),
        'bootstrap': trial.suggest_categorical('bootstrap', [True, False])
    }
    
    # Create model with suggested parameters
    model = RandomForestClassifier(**params, random_state=42, n_jobs=-1)
    
    # Evaluate using cross-validation
    scores = cross_val_score(model, X_train, y_train, cv=5, scoring='f1_weighted')
    
    return scores.mean()

# Create study and optimize
study = optuna.create_study(direction='maximize')
study.optimize(objective, n_trials=100, show_progress_bar=True)

# Get best parameters
best_params = study.best_params
best_score = study.best_value

print(f"Best Score: {best_score:.4f}")
print(f"Best Parameters: {best_params}")

# Visualize optimization history
optuna.visualization.plot_optimization_history(study)
optuna.visualization.plot_param_importances(study)

πŸš€ Deployment Readiness Checker

Model Deployment Checklist

Deployment Readiness: 0%

Complete all checklist items for deployment

πŸ”„ A/B Testing Simulator

Design Your A/B Test

Configure your A/B test parameters to calculate duration and sample requirements...

πŸ“ˆ Model Version Comparison

Version Algorithm Accuracy Latency Model Size Status
v1.0 Logistic Regression 82.3% 5ms 2MB Deprecated
v2.0 Random Forest 87.5% 15ms 50MB Production
v3.0 XGBoost 89.2% 12ms 30MB Staging
v4.0 Neural Network 91.1% 25ms 150MB Development

πŸš€ Advanced Model Development

🧠 AutoML Implementation

Custom AutoML Pipeline
import numpy as np
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
import time

class AutoMLPipeline:
    def __init__(self, time_budget=3600, metric='accuracy'):
        self.time_budget = time_budget  # seconds
        self.metric = metric
        self.models = self._get_model_zoo()
        self.best_model = None
        self.best_score = -np.inf
        self.results = []
        
    def _get_model_zoo(self):
        """Define candidate models"""
        from sklearn.linear_model import LogisticRegression, Ridge
        from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
        from sklearn.svm import SVC
        from xgboost import XGBClassifier
        
        return [
            ('LogisticRegression', LogisticRegression(max_iter=1000)),
            ('RandomForest', RandomForestClassifier(n_estimators=100)),
            ('GradientBoosting', GradientBoostingClassifier(n_estimators=100)),
            ('XGBoost', XGBClassifier(n_estimators=100, use_label_encoder=False)),
            ('SVM', SVC(probability=True))
        ]
    
    def fit(self, X, y):
        """Automatically find best model and hyperparameters"""
        start_time = time.time()
        
        for name, model in self.models:
            if time.time() - start_time > self.time_budget:
                break
                
            # Create pipeline with preprocessing
            pipeline = Pipeline([
                ('scaler', StandardScaler()),
                ('model', model)
            ])
            
            # Evaluate model
            try:
                scores = cross_val_score(
                    pipeline, X, y, 
                    cv=5, 
                    scoring=self.metric,
                    n_jobs=-1
                )
                
                mean_score = scores.mean()
                std_score = scores.std()
                
                self.results.append({
                    'model': name,
                    'score': mean_score,
                    'std': std_score,
                    'time': time.time() - start_time
                })
                
                # Update best model
                if mean_score > self.best_score:
                    self.best_score = mean_score
                    self.best_model = pipeline
                    
                print(f"{name}: {mean_score:.4f} (+/- {std_score:.4f})")
                
            except Exception as e:
                print(f"Failed to evaluate {name}: {e}")
                
        # Perform hyperparameter tuning on best model
        if self.best_model and time.time() - start_time < self.time_budget:
            self._tune_hyperparameters(X, y, time.time() - start_time)
            
        return self
    
    def _tune_hyperparameters(self, X, y, time_used):
        """Fine-tune the best model"""
        from sklearn.model_selection import RandomizedSearchCV
        
        remaining_time = self.time_budget - time_used
        n_iter = min(50, int(remaining_time / 10))  # Estimate iterations
        
        # Get parameter distributions based on model type
        model_name = type(self.best_model.named_steps['model']).__name__
        param_dist = self._get_param_distributions(model_name)
        
        if param_dist:
            random_search = RandomizedSearchCV(
                self.best_model,
                param_dist,
                n_iter=n_iter,
                cv=5,
                scoring=self.metric,
                n_jobs=-1,
                random_state=42
            )
            
            random_search.fit(X, y)
            self.best_model = random_search.best_estimator_
            self.best_score = random_search.best_score_
            
            print(f"Tuned {model_name}: {self.best_score:.4f}")
    
    def _get_param_distributions(self, model_name):
        """Get hyperparameter distributions for each model"""
        from scipy.stats import uniform, randint
        
        distributions = {
            'RandomForestClassifier': {
                'model__n_estimators': randint(50, 500),
                'model__max_depth': randint(3, 20),
                'model__min_samples_split': randint(2, 20),
                'model__min_samples_leaf': randint(1, 10)
            },
            'XGBClassifier': {
                'model__n_estimators': randint(50, 500),
                'model__max_depth': randint(3, 10),
                'model__learning_rate': uniform(0.01, 0.3),
                'model__subsample': uniform(0.6, 0.4)
            },
            'LogisticRegression': {
                'model__C': uniform(0.01, 10),
                'model__penalty': ['l1', 'l2']
            }
        }
        
        return distributions.get(model_name, {})
    
    def predict(self, X):
        """Make predictions with best model"""
        return self.best_model.predict(X)
    
    def get_leaderboard(self):
        """Get sorted results"""
        return sorted(self.results, key=lambda x: x['score'], reverse=True)

# Usage
automl = AutoMLPipeline(time_budget=300, metric='f1_weighted')
automl.fit(X_train, y_train)

print("\nLeaderboard:")
for result in automl.get_leaderboard():
    print(f"{result['model']}: {result['score']:.4f}")

πŸ”¬ Neural Architecture Search

Search Strategies

  • Random Search: Simple baseline
  • Evolutionary: Genetic algorithms
  • Reinforcement Learning: Controller-based
  • Differentiable: DARTS approach
  • One-Shot: SuperNet training

Search Space

Layers: 1-20
Units: 32-512
Activation: ReLU/Tanh
Dropout: 0-0.5
Optimizer: Adam/SGD
LR: 0.0001-0.1

Efficiency Techniques

Early Stopping: Terminate poor performers early
Weight Sharing: Reuse trained weights
Proxy Tasks: Train on smaller datasets

⚑ Distributed Training

Multi-GPU Training with PyTorch
import torch
import torch.nn as nn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data.distributed import DistributedSampler

class DistributedTrainer:
    def __init__(self, model, rank, world_size):
        self.rank = rank
        self.world_size = world_size
        
        # Initialize distributed training
        dist.init_process_group(
            backend='nccl',
            init_method='env://',
            world_size=world_size,
            rank=rank
        )
        
        # Move model to GPU
        self.device = torch.device(f'cuda:{rank}')
        self.model = model.to(self.device)
        
        # Wrap model with DDP
        self.model = DDP(
            self.model,
            device_ids=[rank],
            output_device=rank,
            find_unused_parameters=True
        )
        
        # Setup optimizer with scaled learning rate
        base_lr = 0.001
        self.lr = base_lr * world_size  # Linear scaling rule
        self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
        
        # Learning rate scheduler
        self.scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, 
            T_max=100
        )
        
    def train_epoch(self, dataloader):
        """Train one epoch with gradient accumulation"""
        self.model.train()
        total_loss = 0
        accumulation_steps = 4  # Gradient accumulation
        
        for batch_idx, (data, target) in enumerate(dataloader):
            data, target = data.to(self.device), target.to(self.device)
            
            # Forward pass
            output = self.model(data)
            loss = nn.functional.cross_entropy(output, target)
            loss = loss / accumulation_steps
            
            # Backward pass
            loss.backward()
            
            # Update weights
            if (batch_idx + 1) % accumulation_steps == 0:
                # Gradient clipping
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)
                
                self.optimizer.step()
                self.optimizer.zero_grad()
            
            total_loss += loss.item()
            
            # Log progress (only on rank 0)
            if self.rank == 0 and batch_idx % 100 == 0:
                print(f'Batch [{batch_idx}/{len(dataloader)}] Loss: {loss.item():.4f}')
        
        # All-reduce to get average loss across all processes
        avg_loss = total_loss / len(dataloader)
        avg_loss_tensor = torch.tensor(avg_loss).to(self.device)
        dist.all_reduce(avg_loss_tensor, op=dist.ReduceOp.SUM)
        avg_loss = avg_loss_tensor.item() / self.world_size
        
        return avg_loss
    
    def save_checkpoint(self, epoch, path):
        """Save model checkpoint (only on rank 0)"""
        if self.rank == 0:
            checkpoint = {
                'epoch': epoch,
                'model_state_dict': self.model.module.state_dict(),
                'optimizer_state_dict': self.optimizer.state_dict(),
                'scheduler_state_dict': self.scheduler.state_dict(),
                'loss': self.current_loss
            }
            torch.save(checkpoint, path)
            print(f"Checkpoint saved: {path}")
    
    def cleanup(self):
        """Clean up distributed training"""
        dist.destroy_process_group()

# Usage
def main(rank, world_size):
    # Setup
    trainer = DistributedTrainer(model, rank, world_size)
    
    # Create distributed sampler
    train_sampler = DistributedSampler(
        train_dataset,
        num_replicas=world_size,
        rank=rank
    )
    
    train_loader = DataLoader(
        train_dataset,
        batch_size=32,
        sampler=train_sampler,
        num_workers=4,
        pin_memory=True
    )
    
    # Training loop
    for epoch in range(num_epochs):
        train_sampler.set_epoch(epoch)  # Shuffle differently each epoch
        loss = trainer.train_epoch(train_loader)
        
        if rank == 0:
            print(f"Epoch {epoch}: Loss = {loss:.4f}")
            
        trainer.scheduler.step()
        
        # Save checkpoint
        if epoch % 10 == 0:
            trainer.save_checkpoint(epoch, f"checkpoint_epoch_{epoch}.pt")
    
    trainer.cleanup()

# Launch distributed training
if __name__ == "__main__":
    world_size = torch.cuda.device_count()
    torch.multiprocessing.spawn(
        main,
        args=(world_size,),
        nprocs=world_size,
        join=True
    )

🎯 Model Optimization Techniques

Technique Description Speed Gain Size Reduction Accuracy Impact
Quantization Reduce precision (FP32β†’INT8) 2-4x 75% 0-2% loss
Pruning Remove unnecessary weights 1.5-3x 50-90% 1-3% loss
Knowledge Distillation Train smaller student model 5-10x 80-95% 2-5% loss
Mixed Precision FP16 training with FP32 master 2-3x 50% No loss
ONNX Conversion Optimize for inference 1.5-2x 10-20% No loss

πŸ” Advanced Monitoring & Debugging

Model Interpretability

SHAP Analysis
import shap

# Create explainer
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)

# Feature importance
shap.summary_plot(shap_values, X_test)

# Individual prediction
shap.force_plot(
    explainer.expected_value[1], 
    shap_values[1][0], 
    X_test.iloc[0]
)

Performance Profiling

  • GPU utilization monitoring
  • Memory leak detection
  • Bottleneck identification
  • Latency breakdown
Use tools: TensorBoard, Weights & Biases, MLflow

Error Analysis

15%
False Positives
8%
False Negatives

Systematic analysis of failure modes

⚑ Quick Reference Guide

πŸ“‹ Model Development Checklist

βœ… Data Preparation

  • Exploratory data analysis
  • Handle missing values
  • Feature engineering
  • Train/val/test split
  • Data augmentation

βœ… Model Training

  • Baseline model
  • Algorithm selection
  • Hyperparameter tuning
  • Cross-validation
  • Ensemble methods

βœ… Evaluation

  • Metric selection
  • Error analysis
  • Bias testing
  • Performance profiling
  • Business metrics

βœ… Deployment

  • Model serialization
  • API development
  • Performance testing
  • Monitoring setup
  • Documentation

πŸ› οΈ Framework Comparison

Framework Best For Language Deployment Community
TensorFlow Production systems Python/C++ TF Serving, TF Lite Very Large
PyTorch Research & development Python TorchServe, ONNX Large
Scikit-learn Classical ML Python Pickle, ONNX Very Large
XGBoost Tabular data Python/R/Java Native, ONNX Large
JAX High performance Python JIT compilation Growing

πŸ’‘ Common Commands

Essential Model Development Commands
# Model Training
model.fit(X_train, y_train, epochs=10, batch_size=32)
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# Model Evaluation
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)

# Model Saving/Loading
model.save('model.h5')  # Keras
torch.save(model.state_dict(), 'model.pt')  # PyTorch
joblib.dump(model, 'model.pkl')  # Scikit-learn

# Hyperparameter Tuning
GridSearchCV(estimator, param_grid, cv=5)
RandomizedSearchCV(estimator, param_distributions, n_iter=100)

# Cross-Validation
cross_val_score(model, X, y, cv=5, scoring='accuracy')
cross_validate(model, X, y, cv=5, return_train_score=True)

# Feature Importance
feature_importance = model.feature_importances_  # Tree-based
permutation_importance(model, X_test, y_test)  # Model-agnostic

# Model Monitoring
mlflow.log_metric("accuracy", accuracy)
wandb.log({"loss": loss, "accuracy": accuracy})

🚨 Common Pitfalls & Solutions

❌ Overfitting

Symptoms: High train accuracy, low validation accuracy

Solutions:

  • Add regularization (L1/L2)
  • Increase dropout
  • Data augmentation
  • Early stopping
  • Reduce model complexity

❌ Underfitting

Symptoms: Low train and validation accuracy

Solutions:

  • Increase model complexity
  • Add features
  • Reduce regularization
  • Train longer
  • Better feature engineering

❌ Data Leakage

Symptoms: Too-good-to-be-true results

Solutions:

  • Proper train/test split
  • Time-based validation
  • Feature audit
  • Pipeline validation
  • Cross-validation

πŸ“Š Key Metrics Reference

When to Use Each Metric

Accuracy: Balanced classes

Precision: False positives costly

Recall: False negatives costly

F1: Balance precision/recall

AUC-ROC: Probability ranking

Log Loss: Probability calibration

Performance Targets

Accuracy: > 90%
Precision: > 85%
Recall: > 80%
F1 Score: > 0.85
AUC-ROC: > 0.9
Latency: < 100ms

Resource Guidelines

GPU Memory: Model size Γ— 4
RAM: Dataset size Γ— 3
Storage: Model + Data Γ— 2
Training Time: O(n Γ— epochs)
Inference: O(1) per sample