Overview: Autonomous agents handling customer inquiries 24/7 with human-like understanding and problem-solving capabilities.
# Customer Service Agent Architecture class CustomerServiceAgent: def __init__(self): self.components = { "intent_classifier": "Identifies customer intent", "sentiment_analyzer": "Detects emotional state", "knowledge_base": "Company policies, FAQs, procedures", "ticket_system": "CRM integration", "escalation_handler": "Human handoff logic" } async def handle_inquiry(self, message, customer_id): # 1. Classify intent intent = await self.classify_intent(message) # 2. Analyze sentiment sentiment = await self.analyze_sentiment(message) # 3. Retrieve customer context context = await self.get_customer_context(customer_id) # 4. Generate response if intent in ["refund", "complaint", "technical_issue"]: response = await self.handle_complex_query( intent, context, sentiment ) else: response = await self.handle_simple_query(intent) # 5. Check if escalation needed if sentiment.score < 0.3 or intent.confidence < 0.7: await self.escalate_to_human(message, context) return response
Overview: AI agents that qualify leads, personalize outreach, schedule meetings, and nurture prospects through the sales funnel.
Overview: Automate candidate screening, interview scheduling, onboarding processes, and employee engagement initiatives.
# HR Recruitment Agent class RecruitmentAgent: async def screen_candidate(self, resume, job_requirements): # Extract skills and experience candidate_profile = await self.parse_resume(resume) # Match against requirements match_score = await self.calculate_match( candidate_profile, job_requirements ) # Generate screening questions if match_score > 0.7: questions = await self.generate_screening_questions( candidate_profile, job_requirements ) # Schedule initial interview await self.schedule_interview(candidate_profile.email) return { "match_score": match_score, "recommendation": self.get_recommendation(match_score), "next_steps": self.determine_next_steps(match_score) }
Overview: AI agents that assist physicians in diagnosis, treatment planning, and clinical decision-making based on patient data and medical literature.
# Clinical Decision Support System class ClinicalDecisionAgent: def __init__(self): self.models = { "symptom_checker": SymptomAnalyzer(), "lab_interpreter": LabResultsInterpreter(), "imaging_analyzer": ImagingAIModel(), "drug_interactions": DrugInteractionChecker(), "treatment_recommender": TreatmentRecommender() } async def analyze_patient(self, patient_data): # Comprehensive patient analysis symptoms = await self.analyze_symptoms(patient_data.symptoms) lab_insights = await self.interpret_labs(patient_data.lab_results) imaging_findings = await self.analyze_imaging(patient_data.scans) # Risk assessment risk_factors = await self.assess_risks(patient_data) # Differential diagnosis diagnoses = await self.generate_differential( symptoms, lab_insights, imaging_findings ) # Treatment recommendations treatments = await self.recommend_treatments( diagnoses, patient_data.medical_history, patient_data.allergies ) # Check drug interactions interactions = await self.check_drug_interactions( treatments.medications, patient_data.current_medications ) return { "diagnoses": diagnoses, "confidence": self.calculate_confidence(diagnoses), "treatments": treatments, "warnings": interactions, "follow_up": self.schedule_follow_up(diagnoses) }
Overview: Automated patient intake, symptom assessment, and triage prioritization for emergency departments and clinics.
Overview: AI agents that accelerate drug discovery by predicting molecular interactions, identifying potential compounds, and optimizing clinical trials.
Overview: Autonomous trading agents that analyze markets, execute trades, and manage portfolios with advanced risk management.
# Algorithmic Trading Agent class TradingAgent: def __init__(self): self.strategies = { "momentum": MomentumStrategy(), "arbitrage": ArbitrageStrategy(), "mean_reversion": MeanReversionStrategy(), "sentiment": SentimentStrategy() } self.risk_manager = RiskManagement() async def execute_trade_decision(self, market_data): # Analyze market conditions signals = await self.generate_signals(market_data) # Risk assessment risk_metrics = await self.risk_manager.assess( signals, self.portfolio ) # Position sizing position_size = self.calculate_position_size( signals.confidence, risk_metrics, self.portfolio.available_capital ) # Execute if conditions met if self.should_trade(signals, risk_metrics): order = await self.place_order( symbol=signals.symbol, size=position_size, type=signals.order_type, limit_price=signals.limit_price ) # Set stop loss and take profit await self.set_risk_parameters(order) return order
Overview: Real-time fraud detection agents that identify suspicious transactions, prevent financial crimes, and protect customer accounts.
Overview: AI agents that evaluate credit risk, automate underwriting decisions, and optimize loan portfolios.
Overview: AI agents that provide personalized product recommendations, style advice, and shopping assistance based on customer preferences.
# Personal Shopping Assistant class ShoppingAssistant: async def recommend_products(self, user_profile): # Analyze user preferences preferences = await self.analyze_preferences( user_profile.purchase_history, user_profile.browsing_behavior, user_profile.demographics ) # Generate recommendations recommendations = await self.collaborative_filtering( user_profile, similar_users=self.find_similar_users(user_profile) ) # Personalize results personalized = await self.personalize_recommendations( recommendations, preferences, context={ "season": self.get_current_season(), "trends": self.get_trending_items(), "inventory": self.check_inventory() } ) # Add complementary items complete_looks = await self.create_complete_looks( personalized ) return { "recommendations": personalized[:10], "complete_looks": complete_looks, "reasons": self.explain_recommendations(personalized) }
Overview: Intelligent agents that optimize inventory levels, predict demand, and automate reordering processes.
Overview: AI agents that analyze customer reviews, extract insights, and provide actionable feedback for product improvement.
Overview: AI tutors that provide personalized instruction, adapt to learning styles, and offer real-time feedback to students.
# Intelligent Tutoring System class TutoringAgent: async def personalized_lesson(self, student_profile): # Assess current knowledge knowledge_state = await self.assess_knowledge( student_profile.assessment_history ) # Identify learning gaps gaps = await self.identify_gaps( knowledge_state, curriculum_requirements=self.get_curriculum() ) # Generate adaptive content lesson = await self.generate_lesson( gaps=gaps, learning_style=student_profile.learning_style, difficulty_level=self.calculate_optimal_difficulty( student_profile.performance_history ) ) # Create interactive exercises exercises = await self.create_exercises( lesson.concepts, difficulty=lesson.difficulty, format=student_profile.preferred_format ) # Provide real-time feedback async for response in student_responses: feedback = await self.generate_feedback( response, encouraging=True, hints=self.generate_hints(response.errors) ) # Adjust difficulty dynamically if response.is_correct: lesson.difficulty += 0.1 else: lesson.difficulty -= 0.05 return lesson
Overview: AI agents that grade assignments, provide detailed feedback, and track student progress across subjects.
Overview: AI agents that help researchers find relevant papers, summarize literature, and identify research gaps.
Overview: AI agents that analyze contracts, identify risks, suggest modifications, and ensure compliance with regulations.
# Contract Analysis Agent class ContractReviewAgent: async def analyze_contract(self, contract_text): # Extract key clauses clauses = await self.extract_clauses(contract_text) # Identify risks risks = [] for clause in clauses: risk_assessment = await self.assess_risk(clause) if risk_assessment.score > 0.7: risks.append({ "clause": clause, "risk_level": risk_assessment.level, "explanation": risk_assessment.explanation, "suggestion": self.suggest_modification(clause) }) # Check compliance compliance = await self.check_compliance( contract_text, regulations=["GDPR", "CCPA", "SOX"] ) # Generate summary summary = await self.generate_summary( clauses=clauses, risks=risks, compliance=compliance ) return { "summary": summary, "risks": risks, "compliance": compliance, "recommendations": self.generate_recommendations(risks) }
Overview: AI agents that search case law, identify precedents, and provide comprehensive legal research summaries.
Overview: Continuous monitoring agents that track regulatory changes, assess compliance status, and alert to potential violations.
Overview: Computer vision agents that inspect products, detect defects, and ensure quality standards in real-time.
# Quality Control Vision Agent class QualityControlAgent: async def inspect_product(self, image_stream): # Real-time image processing async for frame in image_stream: # Detect defects defects = await self.detect_defects(frame) if defects: # Classify defect type defect_type = await self.classify_defect(defects) # Determine severity severity = self.assess_severity(defect_type) # Take action if severity == "critical": await self.stop_production_line() await self.alert_supervisor(defect_type, frame) elif severity == "major": await self.mark_for_rework(product_id) else: await self.log_minor_defect(product_id, defect_type) # Update quality metrics await self.update_metrics({ "defect_rate": self.calculate_defect_rate(), "defect_type": defect_type, "timestamp": datetime.now() }) # Predictive quality quality_trend = await self.predict_quality_trend( self.recent_inspections ) if quality_trend.declining: await self.recommend_maintenance()
Overview: AI agents that predict equipment failures, schedule maintenance, and optimize machine uptime.
Overview: Intelligent agents that optimize supply chains, predict demand, and manage inventory across multiple locations.
# Industry-Specific ROI Calculator def calculate_industry_roi(industry, params): industry_multipliers = { "healthcare": {"labor_savings": 2.5, "error_reduction": 3.0}, "finance": {"automation": 3.5, "fraud_prevention": 5.0}, "ecommerce": {"conversion": 2.0, "customer_lifetime": 1.8}, "education": {"scalability": 10.0, "retention": 2.2}, "legal": {"efficiency": 4.0, "accuracy": 2.8}, "manufacturing": {"quality": 2.5, "downtime": 3.5} } base_roi = calculate_base_roi(params) industry_factor = industry_multipliers[industry] adjusted_benefits = { "labor_savings": params['labor_savings'] * industry_factor.get('labor_savings', 1), "error_reduction": params['error_cost'] * industry_factor.get('error_reduction', 1), "revenue_increase": params['revenue'] * industry_factor.get('conversion', 1) } total_benefits = sum(adjusted_benefits.values()) total_costs = params['development'] + params['infrastructure'] + params['maintenance'] return { 'industry': industry, 'total_benefits': total_benefits, 'total_costs': total_costs, 'roi_percentage': ((total_benefits - total_costs) / total_costs) * 100, 'payback_months': total_costs / (total_benefits / 12), 'break_even_point': find_break_even(total_costs, total_benefits) }