⚖️ AI Ethics & Governance

Build responsible AI systems with ethical frameworks, bias mitigation, and governance best practices

🎯 Why AI Ethics & Governance Matter

🛡️ Risk Mitigation

Prevent reputational damage, legal issues, and harmful outcomes from AI systems.

$1.6B
Avg. GDPR Fine
73%
Trust Impact

🌍 Social Responsibility

Ensure AI benefits society fairly and doesn't perpetuate discrimination or harm.

  • Protect vulnerable populations
  • Ensure equitable outcomes
  • Preserve human dignity
  • Support human autonomy

💼 Business Value

Ethical AI drives customer trust, regulatory compliance, and sustainable growth.

✓ 2.3x Customer Retention
✓ 45% Faster Approval

🔍 AI Ethics Risk Assessment

Select your AI use case parameters to assess ethical risks and requirements...

📊 Real-World Impact

Incident Company Issue Impact Lesson
Biased Hiring Amazon Gender bias in recruiting AI System scrapped Test for bias continuously
Facial Recognition IBM/Microsoft Racial bias in accuracy Product withdrawal Diverse training data essential
Credit Scoring Apple Card Gender discrimination Regulatory investigation Explainability required
Healthcare Multiple Racial bias in algorithms Health disparities Clinical validation needed
Content Moderation Facebook Harmful content spread $5B FTC fine Human oversight critical

🌟 Ethical AI Principles

⚖️

Fairness

Equal treatment for all

🔍

Transparency

Clear and explainable

📋

Accountability

Clear responsibility

🔒

Privacy

Data protection

🛡️

Safety

Harm prevention

📚 Ethics & Governance Fundamentals

🏛️ Core Ethical Frameworks

Consequentialism

Focus on outcomes and impacts

Utilitarian Calculation
# Maximize overall benefit
def utilitarian_decision(options):
    best_option = None
    max_utility = -float('inf')
    
    for option in options:
        benefits = calculate_benefits(option)
        harms = calculate_harms(option)
        net_utility = benefits - harms
        
        if net_utility > max_utility:
            max_utility = net_utility
            best_option = option
    
    return best_option

Deontological Ethics

Rule-based approach

  • Respect for persons
  • Informed consent
  • Do no harm principle
  • Truth and transparency
Some actions are inherently right or wrong

Virtue Ethics

Character and virtues

Justice
Honesty
Responsibility

🎯 Types of AI Bias

Bias Type Description Example Mitigation
Historical Bias Past discrimination in data Hiring data reflecting past gender bias Reweight or augment data
Representation Bias Underrepresentation of groups Face recognition failing on dark skin Diverse data collection
Measurement Bias Different measurement quality Healthcare data quality varies by region Standardize measurements
Aggregation Bias One-size-fits-all models Medical AI not accounting for ethnicity Subgroup modeling
Evaluation Bias Inappropriate benchmarks Testing only on majority groups Inclusive evaluation

📐 Fairness Metrics

Fairness Calculator

Group A
Group B

Enter group outcomes to calculate various fairness metrics...

🏗️ Governance Structure

Ethics Committee

Cross-functional oversight body

  • Policy development
  • Risk assessment
  • Incident response

Review Process

Systematic evaluation

  • Pre-deployment review
  • Continuous monitoring
  • Periodic audits

Documentation

Transparency records

  • Model cards
  • Data sheets
  • Impact assessments

🔒 Privacy Principles

Data Minimization

Collect only what's necessary

if not required: don't_collect()

Purpose Limitation

Use data only for stated purpose

enforce_purpose_binding()

Consent Management

Clear, informed, revocable

get_explicit_consent()

Data Rights

Access, rectify, delete, port

implement_user_rights()

🔄 Common Ethics & Governance Patterns

🛡️ Bias Detection Patterns

Comprehensive Bias Detection
import numpy as np
import pandas as pd
from sklearn.metrics import confusion_matrix

class BiasDetector:
    def __init__(self, protected_attributes):
        self.protected_attributes = protected_attributes
        self.bias_metrics = {}
        
    def detect_bias(self, data, predictions, labels):
        """Detect various types of bias in model predictions"""
        results = {}
        
        for attribute in self.protected_attributes:
            groups = data[attribute].unique()
            
            # Calculate metrics for each group
            group_metrics = {}
            for group in groups:
                mask = data[attribute] == group
                group_pred = predictions[mask]
                group_label = labels[mask]
                
                # Basic metrics
                group_metrics[group] = {
                    'size': mask.sum(),
                    'positive_rate': group_pred.mean(),
                    'true_positive_rate': self.tpr(group_label, group_pred),
                    'false_positive_rate': self.fpr(group_label, group_pred),
                    'precision': self.precision(group_label, group_pred),
                    'accuracy': (group_pred == group_label).mean()
                }
            
            # Calculate fairness metrics
            results[attribute] = {
                'group_metrics': group_metrics,
                'demographic_parity': self.demographic_parity(group_metrics),
                'equal_opportunity': self.equal_opportunity(group_metrics),
                'equalized_odds': self.equalized_odds(group_metrics),
                'disparate_impact': self.disparate_impact(group_metrics)
            }
        
        return results
    
    def demographic_parity(self, group_metrics):
        """Difference in positive prediction rates"""
        rates = [m['positive_rate'] for m in group_metrics.values()]
        return max(rates) - min(rates)
    
    def equal_opportunity(self, group_metrics):
        """Difference in true positive rates"""
        tprs = [m['true_positive_rate'] for m in group_metrics.values()]
        return max(tprs) - min(tprs)
    
    def equalized_odds(self, group_metrics):
        """Difference in TPR and FPR"""
        tprs = [m['true_positive_rate'] for m in group_metrics.values()]
        fprs = [m['false_positive_rate'] for m in group_metrics.values()]
        return max(max(tprs) - min(tprs), max(fprs) - min(fprs))
    
    def disparate_impact(self, group_metrics):
        """Ratio of positive rates (80% rule)"""
        rates = [m['positive_rate'] for m in group_metrics.values()]
        if min(rates) > 0:
            return min(rates) / max(rates)
        return 0
    
    def generate_report(self, results):
        """Generate bias assessment report"""
        report = []
        
        for attribute, metrics in results.items():
            report.append(f"\n=== {attribute.upper()} ===")
            
            # Group statistics
            for group, stats in metrics['group_metrics'].items():
                report.append(f"\n{group}:")
                report.append(f"  Size: {stats['size']}")
                report.append(f"  Positive Rate: {stats['positive_rate']:.3f}")
                report.append(f"  Accuracy: {stats['accuracy']:.3f}")
            
            # Fairness metrics
            report.append(f"\nFairness Metrics:")
            report.append(f"  Demographic Parity: {metrics['demographic_parity']:.3f}")
            report.append(f"  Equal Opportunity: {metrics['equal_opportunity']:.3f}")
            report.append(f"  Equalized Odds: {metrics['equalized_odds']:.3f}")
            report.append(f"  Disparate Impact: {metrics['disparate_impact']:.3f}")
            
            # Recommendations
            if metrics['disparate_impact'] < 0.8:
                report.append("  ⚠️ WARNING: Fails 80% rule for disparate impact")
            if metrics['demographic_parity'] > 0.1:
                report.append("  ⚠️ WARNING: Significant demographic parity difference")
        
        return "\n".join(report)

# Usage
detector = BiasDetector(['gender', 'race', 'age_group'])
bias_results = detector.detect_bias(data, predictions, labels)
print(detector.generate_report(bias_results))

🔍 Explainability Patterns

LIME (Local Interpretable Model-agnostic Explanations)

Explain individual predictions

LIME Implementation
import lime
from lime.lime_tabular import LimeTabularExplainer

explainer = LimeTabularExplainer(
    training_data,
    feature_names=feature_names,
    class_names=['Rejected', 'Approved'],
    mode='classification'
)

# Explain a prediction
exp = explainer.explain_instance(
    instance,
    model.predict_proba,
    num_features=10
)

# Get explanation
exp.show_in_notebook()

SHAP (SHapley Additive exPlanations)

Global and local feature importance

  • Consistent explanations
  • Feature interactions
  • Model-agnostic
Best for stakeholder communication

Model Cards

Standardized model documentation

Model details
Intended use
Metrics
Limitations

🏛️ Governance Patterns

Pattern Description When to Use Implementation
Ethics Review Board Committee approval process High-risk applications Quarterly reviews, veto power
Algorithmic Audits Third-party evaluation Regulatory compliance Annual external audits
Red Team Testing Adversarial testing Security-critical systems Continuous testing cycles
Staged Deployment Gradual rollout with monitoring New AI features 1% → 10% → 50% → 100%
Kill Switch Emergency shutdown capability Autonomous systems Manual override controls

📊 Monitoring Patterns

Bias Drift Monitor

Gender Parity
Age Fairness
Race Equity
Income Balance
Geographic
Education

Click on dimensions to simulate bias detection...

🔐 Privacy-Preserving Patterns

Differential Privacy Implementation
import numpy as np

class DifferentialPrivacy:
    def __init__(self, epsilon=1.0, delta=1e-5):
        """
        epsilon: privacy budget (lower = more private)
        delta: probability of privacy breach
        """
        self.epsilon = epsilon
        self.delta = delta
    
    def add_laplace_noise(self, data, sensitivity):
        """Add Laplace noise for differential privacy"""
        scale = sensitivity / self.epsilon
        noise = np.random.laplace(0, scale, data.shape)
        return data + noise
    
    def add_gaussian_noise(self, data, sensitivity):
        """Add Gaussian noise for (ε,δ)-differential privacy"""
        sigma = sensitivity * np.sqrt(2 * np.log(1.25 / self.delta)) / self.epsilon
        noise = np.random.normal(0, sigma, data.shape)
        return data + noise
    
    def private_mean(self, data, lower_bound, upper_bound):
        """Calculate differentially private mean"""
        # Clip data to bounds
        clipped = np.clip(data, lower_bound, upper_bound)
        
        # Calculate sensitivity
        sensitivity = (upper_bound - lower_bound) / len(data)
        
        # Add noise to mean
        true_mean = np.mean(clipped)
        private_mean = self.add_laplace_noise(true_mean, sensitivity)
        
        return private_mean
    
    def private_histogram(self, data, bins):
        """Create differentially private histogram"""
        # Create histogram
        hist, edges = np.histogram(data, bins=bins)
        
        # Add noise (sensitivity = 1 for counting queries)
        private_hist = self.add_laplace_noise(hist, sensitivity=1)
        
        # Ensure non-negative counts
        private_hist = np.maximum(private_hist, 0)
        
        return private_hist, edges

# Usage
dp = DifferentialPrivacy(epsilon=0.1, delta=1e-5)
private_avg_age = dp.private_mean(ages, lower_bound=0, upper_bound=120)
print(f"Private average age: {private_avg_age:.1f}")

💻 Hands-On Practice

⚖️ Bias Detection Tool

Test Your Model for Bias

Enter your model predictions to detect potential bias...

🔍 Explainability Generator

Generate Model Explanation

Configure model inputs to generate an explainable decision...

📋 Compliance Checker

AI System Compliance Assessment

Pending
Pending
Pending
Pending
Pending
Pending
Pending
Pending
Compliance Score: 0%

Complete all requirements for deployment

🛡️ Privacy Risk Calculator

Assess Privacy Risk Level

Configure data handling parameters to assess privacy risk...

📊 Model Card Generator

Automated Model Card Generation
class ModelCard:
    def __init__(self, model_name, version):
        self.model_name = model_name
        self.version = version
        self.sections = {}
    
    def add_model_details(self, details):
        """Add basic model information"""
        self.sections['model_details'] = {
            'name': self.model_name,
            'version': self.version,
            'type': details.get('type', 'Classification'),
            'architecture': details.get('architecture'),
            'training_date': details.get('training_date'),
            'developers': details.get('developers', []),
            'contact': details.get('contact')
        }
    
    def add_intended_use(self, use_cases):
        """Document intended use cases"""
        self.sections['intended_use'] = {
            'primary_uses': use_cases.get('primary', []),
            'primary_users': use_cases.get('users', []),
            'out_of_scope': use_cases.get('out_of_scope', [])
        }
    
    def add_performance_metrics(self, metrics):
        """Add model performance metrics"""
        self.sections['metrics'] = {
            'overall': metrics.get('overall', {}),
            'subgroup': metrics.get('subgroup', {}),
            'confidence_intervals': metrics.get('confidence_intervals', {})
        }
    
    def add_ethical_considerations(self, ethics):
        """Document ethical considerations"""
        self.sections['ethics'] = {
            'bias_testing': ethics.get('bias_testing', {}),
            'fairness_metrics': ethics.get('fairness_metrics', {}),
            'privacy_measures': ethics.get('privacy_measures', []),
            'potential_harms': ethics.get('potential_harms', []),
            'mitigation_strategies': ethics.get('mitigation', [])
        }
    
    def add_limitations(self, limitations):
        """Document known limitations"""
        self.sections['limitations'] = limitations
    
    def generate_card(self, format='markdown'):
        """Generate the model card"""
        if format == 'markdown':
            return self._generate_markdown()
        elif format == 'json':
            return json.dumps(self.sections, indent=2)
        elif format == 'html':
            return self._generate_html()
    
    def _generate_markdown(self):
        """Generate markdown format model card"""
        md = []
        md.append(f"# Model Card: {self.model_name} v{self.version}")
        md.append("")
        
        # Model Details
        if 'model_details' in self.sections:
            md.append("## Model Details")
            details = self.sections['model_details']
            for key, value in details.items():
                if value:
                    md.append(f"- **{key.replace('_', ' ').title()}**: {value}")
            md.append("")
        
        # Intended Use
        if 'intended_use' in self.sections:
            md.append("## Intended Use")
            use = self.sections['intended_use']
            md.append("### Primary Uses")
            for item in use.get('primary_uses', []):
                md.append(f"- {item}")
            md.append("### Out of Scope")
            for item in use.get('out_of_scope', []):
                md.append(f"- ❌ {item}")
            md.append("")
        
        # Performance Metrics
        if 'metrics' in self.sections:
            md.append("## Performance Metrics")
            metrics = self.sections['metrics']
            if 'overall' in metrics:
                md.append("### Overall Performance")
                for metric, value in metrics['overall'].items():
                    md.append(f"- {metric}: {value}")
            md.append("")
        
        # Ethical Considerations
        if 'ethics' in self.sections:
            md.append("## Ethical Considerations")
            ethics = self.sections['ethics']
            if 'potential_harms' in ethics:
                md.append("### Potential Harms")
                for harm in ethics['potential_harms']:
                    md.append(f"- ⚠️ {harm}")
            if 'mitigation_strategies' in ethics:
                md.append("### Mitigation Strategies")
                for strategy in ethics['mitigation_strategies']:
                    md.append(f"- ✅ {strategy}")
            md.append("")
        
        # Limitations
        if 'limitations' in self.sections:
            md.append("## Limitations")
            for limitation in self.sections['limitations']:
                md.append(f"- {limitation}")
        
        return "\n".join(md)

# Usage Example
card = ModelCard("CreditRiskModel", "2.0")

card.add_model_details({
    'type': 'Binary Classification',
    'architecture': 'XGBoost',
    'training_date': '2024-03-15',
    'developers': ['AI Team'],
    'contact': 'ai-team@company.com'
})

card.add_intended_use({
    'primary': ['Credit risk assessment for loan applications'],
    'users': ['Credit analysts', 'Loan officers'],
    'out_of_scope': ['Investment advice', 'Criminal background checks']
})

card.add_performance_metrics({
    'overall': {
        'accuracy': 0.89,
        'precision': 0.87,
        'recall': 0.91,
        'f1_score': 0.89
    },
    'subgroup': {
        'gender': {'male': 0.88, 'female': 0.89},
        'age_group': {'<30': 0.86, '30-50': 0.90, '>50': 0.89}
    }
})

card.add_ethical_considerations({
    'bias_testing': {'demographic_parity': 0.03, 'equal_opportunity': 0.02},
    'potential_harms': ['May perpetuate historical lending biases'],
    'mitigation': ['Regular bias audits', 'Human review for edge cases']
})

card.add_limitations([
    'Performance may degrade for applicants with limited credit history',
    'Not validated for small business loans',
    'Requires retraining every 6 months'
])

print(card.generate_card())

🚀 Advanced Ethics & Governance

🤖 Federated Learning for Privacy

Federated Learning Implementation
import numpy as np
from typing import List, Dict, Tuple

class FederatedLearning:
    def __init__(self, num_clients: int, learning_rate: float = 0.01):
        self.num_clients = num_clients
        self.learning_rate = learning_rate
        self.global_model = None
        self.client_models = []
        
    def initialize_global_model(self, model_shape: Tuple):
        """Initialize the global model"""
        self.global_model = np.random.randn(*model_shape) * 0.01
        return self.global_model
    
    def distribute_model(self):
        """Distribute global model to clients"""
        return [self.global_model.copy() for _ in range(self.num_clients)]
    
    def train_on_client(self, client_id: int, client_data: np.ndarray, 
                       client_labels: np.ndarray, epochs: int = 1):
        """Train model on client's local data"""
        local_model = self.client_models[client_id].copy()
        
        for epoch in range(epochs):
            # Simulate local training (simplified)
            predictions = self.forward_pass(client_data, local_model)
            loss = self.compute_loss(predictions, client_labels)
            gradients = self.compute_gradients(client_data, client_labels, local_model)
            
            # Update local model
            local_model -= self.learning_rate * gradients
        
        # Add differential privacy noise
        privacy_noise = self.add_privacy_noise(local_model, epsilon=1.0)
        local_model += privacy_noise
        
        return local_model
    
    def federated_averaging(self, client_updates: List[np.ndarray], 
                          client_weights: List[float] = None):
        """Aggregate client updates using FedAvg"""
        if client_weights is None:
            client_weights = [1.0 / len(client_updates)] * len(client_updates)
        
        # Weighted average of client models
        aggregated_model = np.zeros_like(self.global_model)
        for model, weight in zip(client_updates, client_weights):
            aggregated_model += weight * model
        
        return aggregated_model
    
    def secure_aggregation(self, client_updates: List[np.ndarray]):
        """Secure aggregation with privacy guarantees"""
        # Add masks for secure aggregation
        masks = []
        for i in range(len(client_updates)):
            mask = np.random.randn(*client_updates[0].shape)
            masks.append(mask)
        
        # Masked updates
        masked_updates = []
        for update, mask in zip(client_updates, masks):
            masked_updates.append(update + mask)
        
        # Aggregate masked updates
        aggregated = np.mean(masked_updates, axis=0)
        
        # Remove masks (in real implementation, this is done securely)
        aggregated -= np.mean(masks, axis=0)
        
        return aggregated
    
    def add_privacy_noise(self, model: np.ndarray, epsilon: float):
        """Add differential privacy noise"""
        sensitivity = 1.0  # L2 sensitivity
        scale = sensitivity / epsilon
        noise = np.random.laplace(0, scale, model.shape)
        return noise
    
    def evaluate_fairness(self, test_data: Dict[str, np.ndarray]):
        """Evaluate model fairness across different groups"""
        fairness_metrics = {}
        
        for group_name, group_data in test_data.items():
            predictions = self.forward_pass(group_data['X'], self.global_model)
            accuracy = np.mean(predictions == group_data['y'])
            fairness_metrics[group_name] = {
                'accuracy': accuracy,
                'positive_rate': np.mean(predictions > 0.5)
            }
        
        # Calculate fairness measures
        accuracies = [m['accuracy'] for m in fairness_metrics.values()]
        pos_rates = [m['positive_rate'] for m in fairness_metrics.values()]
        
        fairness_metrics['overall'] = {
            'accuracy_disparity': max(accuracies) - min(accuracies),
            'demographic_parity': max(pos_rates) - min(pos_rates)
        }
        
        return fairness_metrics
    
    def run_federated_round(self, client_data: List[Dict]):
        """Run one round of federated learning"""
        # Distribute current global model
        self.client_models = self.distribute_model()
        
        # Train on each client
        client_updates = []
        for client_id, data in enumerate(client_data):
            local_model = self.train_on_client(
                client_id, 
                data['X'], 
                data['y'],
                epochs=5
            )
            client_updates.append(local_model)
        
        # Aggregate updates
        self.global_model = self.secure_aggregation(client_updates)
        
        return self.global_model

# Usage
fed_learning = FederatedLearning(num_clients=10)
fed_learning.initialize_global_model((100, 10))  # 100 features, 10 classes

# Simulate federated training
for round in range(10):
    print(f"Federated Round {round + 1}")
    global_model = fed_learning.run_federated_round(client_datasets)
    
    # Evaluate fairness
    fairness = fed_learning.evaluate_fairness(test_datasets)
    print(f"Fairness Metrics: {fairness['overall']}")

🔬 Causal Inference for Fair AI

Counterfactual Fairness

What if protected attribute was different?

Decision should remain same in counterfactual world

Causal Graphs

Model causal relationships

Race → SES → Education → Income

Path-Specific Effects

Decompose total effect into fair/unfair paths

  • Direct discrimination
  • Indirect discrimination
  • Spurious correlation

🏛️ AI Governance Frameworks

Framework Focus Key Requirements Jurisdiction
EU AI Act Risk-based regulation Conformity assessment, CE marking European Union
NIST AI RMF Risk management Map, Measure, Manage, Govern United States
ISO/IEC 23053 ML trustworthiness Quality model, metrics International
Singapore Model Innovation-friendly Self-assessment, transparency Singapore
Canada AIDA High-impact systems Impact assessment, mitigation Canada

🤝 Stakeholder Alignment

Stakeholder Impact Matrix

Users

  • Privacy protection
  • Fair treatment
  • Transparency

Regulators

  • Compliance
  • Auditability
  • Safety

Business

  • ROI
  • Risk management
  • Innovation

⚡ Automated Compliance

Compliance Automation System
class ComplianceAutomation:
    def __init__(self, regulations=['GDPR', 'CCPA', 'EU_AI_Act']):
        self.regulations = regulations
        self.checks = self._load_compliance_checks()
        self.audit_log = []
        
    def run_compliance_check(self, ai_system):
        """Run automated compliance checks"""
        results = {
            'timestamp': datetime.now(),
            'system': ai_system.name,
            'version': ai_system.version,
            'checks': {}
        }
        
        for regulation in self.regulations:
            results['checks'][regulation] = self._check_regulation(
                ai_system, regulation
            )
        
        # Generate compliance score
        results['compliance_score'] = self._calculate_score(results['checks'])
        
        # Log results
        self.audit_log.append(results)
        
        return results
    
    def _check_regulation(self, ai_system, regulation):
        """Check compliance with specific regulation"""
        checks = self.checks[regulation]
        results = {}
        
        for check_name, check_func in checks.items():
            try:
                passed, details = check_func(ai_system)
                results[check_name] = {
                    'passed': passed,
                    'details': details,
                    'timestamp': datetime.now()
                }
            except Exception as e:
                results[check_name] = {
                    'passed': False,
                    'error': str(e)
                }
        
        return results
    
    def _load_compliance_checks(self):
        """Load compliance check functions"""
        return {
            'GDPR': {
                'data_minimization': self.check_data_minimization,
                'consent': self.check_consent_mechanism,
                'right_to_explanation': self.check_explainability,
                'data_protection_by_design': self.check_privacy_by_design
            },
            'EU_AI_Act': {
                'risk_assessment': self.check_risk_assessment,
                'human_oversight': self.check_human_oversight,
                'transparency': self.check_transparency,
                'robustness': self.check_robustness
            }
        }
    
    def check_data_minimization(self, ai_system):
        """Check if system follows data minimization principle"""
        features_used = len(ai_system.get_features())
        features_needed = len(ai_system.get_essential_features())
        
        ratio = features_needed / features_used if features_used > 0 else 0
        passed = ratio > 0.8  # At least 80% of features are essential
        
        return passed, {
            'features_used': features_used,
            'features_needed': features_needed,
            'ratio': ratio
        }
    
    def check_human_oversight(self, ai_system):
        """Check for human oversight mechanisms"""
        has_override = ai_system.has_human_override()
        has_monitoring = ai_system.has_monitoring_dashboard()
        has_alerts = ai_system.has_alert_system()
        
        passed = all([has_override, has_monitoring, has_alerts])
        
        return passed, {
            'human_override': has_override,
            'monitoring': has_monitoring,
            'alerts': has_alerts
        }
    
    def generate_compliance_report(self):
        """Generate comprehensive compliance report"""
        report = {
            'summary': self._generate_summary(),
            'detailed_findings': self.audit_log[-1] if self.audit_log else None,
            'recommendations': self._generate_recommendations(),
            'certification_ready': self._check_certification_readiness()
        }
        
        return report

# Usage
compliance = ComplianceAutomation()
results = compliance.run_compliance_check(ai_system)
report = compliance.generate_compliance_report()

if report['certification_ready']:
    print("✅ System ready for certification")
else:
    print("⚠️ Address compliance gaps before certification")

⚡ Quick Reference Guide

📋 Ethics Checklist

✅ Pre-Development

  • Define ethical principles
  • Stakeholder consultation
  • Risk assessment
  • Data audit
  • Legal review

✅ During Development

  • Bias testing
  • Fairness metrics
  • Privacy protection
  • Explainability
  • Documentation

✅ Pre-Deployment

  • Ethics review
  • Compliance check
  • Impact assessment
  • User testing
  • Contingency plans

✅ Post-Deployment

  • Continuous monitoring
  • Incident response
  • Regular audits
  • Feedback loops
  • Model updates

📊 Key Metrics & Formulas

Fairness Metrics Reference
# Demographic Parity
P(Ŷ=1|A=0) = P(Ŷ=1|A=1)

# Equal Opportunity
P(Ŷ=1|Y=1,A=0) = P(Ŷ=1|Y=1,A=1)

# Equalized Odds
P(Ŷ=1|Y=y,A=0) = P(Ŷ=1|Y=y,A=1) for y ∈ {0,1}

# Disparate Impact (80% rule)
P(Ŷ=1|A=0) / P(Ŷ=1|A=1) ≥ 0.8

# Individual Fairness
d(x₁, x₂) small → |f(x₁) - f(x₂)| small

# Counterfactual Fairness
P(Ŷ_A←a = y | A = a', X = x) = P(Ŷ_A←a' = y | A = a', X = x)

🛠️ Tools & Frameworks

Tool Purpose Features Language
Fairlearn Bias mitigation Metrics, algorithms, dashboards Python
AI Fairness 360 Bias detection 70+ metrics, 10+ algorithms Python
What-If Tool Model inspection Interactive visualization TensorBoard
InterpretML Explainability Glass box models Python
Alibi Explanations Multiple algorithms Python

💡 Common Pitfalls

❌ Ethics Washing

Problem: Superficial ethics without substance

Solution: Implement measurable practices and accountability

❌ Fairness Gerrymandering

Problem: Cherry-picking metrics that look good

Solution: Use multiple fairness metrics holistically

❌ Privacy Theater

Problem: Privacy claims without technical guarantees

Solution: Implement proven privacy-preserving techniques

📊 Regulatory Requirements

GDPR Requirements

✓ Lawful basis
✓ Data minimization
✓ Purpose limitation
✓ Storage limitation
✓ Right to explanation

EU AI Act Risk Levels

🔴 Unacceptable: Banned
🟠 High: Strict requirements
🟡 Limited: Transparency
🟢 Minimal: No requirements

Documentation Required

📄 Impact assessments
📄 Model cards
📄 Data sheets
📄 Audit trails
📄 Incident logs