Track different versions of your models to enable rollback and understand model evolution over time.
# Simple model versioning
import pickle
from datetime import datetime
def save_model_version(model, version_name):
# Create version folder
version_path = f"models/{version_name}"
os.makedirs(version_path, exist_ok=True)
# Save model
with open(f"{version_path}/model.pkl", 'wb') as f:
pickle.dump(model, f)
# Save metadata
metadata = {
'version': version_name,
'created': datetime.now().isoformat()
}
with open(f"{version_path}/metadata.json", 'w') as f:
json.dump(metadata, f)
Implement model registries with version control, metadata tracking, and automated rollback capabilities.
# Model version control system
version_control = ModelVersionControl("./model_repo")
# Save new version with metadata
version_control.save_model_version(
model=trained_model,
version="v2.1.0",
metadata={
'accuracy': 0.92,
'training_data': 'dataset_v3',
'hyperparameters': {'lr': 0.001}
},
is_production=True
)
# Rollback if issues detected
if performance_degradation_detected():
version_control.rollback_to_version("v2.0.0")
alert_team("Rolled back due to performance issues")
Deploy enterprise model registries with Git-like branching, A/B testing support, and automated promotion pipelines.
# Enterprise model registry
registry = MLflowModelRegistry()
# Register model with full lineage
model_uri = registry.register_model(
model=model,
name="fraud_detector",
tags={
'framework': 'pytorch',
'dataset': 's3://data/fraud_v3',
'git_commit': get_git_hash()
}
)
# Automated promotion pipeline
@registry.promotion_pipeline
async def promote_model(model_version):
# Run validation suite
if await validate_model(model_version):
# A/B test in staging
ab_result = await run_ab_test(
model_version, traffic_split=0.1
)
if ab_result.improvement > 0.02:
registry.transition_stage(
model_version, "Production"
)