Use Airflow to orchestrate complex multi-agent workflows with scheduling, monitoring, and retry capabilities.
from airflow import DAG
from airflow.operators.python import PythonOperator
from datetime import datetime, timedelta
default_args = {
'owner': 'ai-team',
'retries': 3,
'retry_delay': timedelta(minutes=5)
}
dag = DAG(
'multi_agent_workflow',
default_args=default_args,
schedule_interval='@daily',
start_date=datetime(2024, 1, 1)
)
research = PythonOperator(
task_id='research_agent',
python_callable=run_research_agent,
dag=dag
)
analyze = PythonOperator(
task_id='analysis_agent',
python_callable=run_analysis_agent,
dag=dag
)
report = PythonOperator(
task_id='report_agent',
python_callable=run_report_agent,
dag=dag
)
research >> analyze >> report
Advanced Airflow patterns with dynamic task generation, branching, and external system integration.
from airflow.decorators import task, dag
from airflow.operators.python import BranchPythonOperator
@dag(
schedule_interval='@hourly',
start_date=datetime(2024, 1, 1),
catchup=False
)
def dynamic_agent_workflow():
@task
def get_tasks():
return ['task1', 'task2', 'task3']
@task
def process_task(task_name):
agent = select_agent(task_name)
return agent.execute(task_name)
@task.branch
def check_quality(results):
if all(r['quality'] > 0.8 for r in results):
return 'publish'
else:
return 'review'
tasks = get_tasks()
results = process_task.expand(task_name=tasks)
quality_check = check_quality(results)
workflow = dynamic_agent_workflow()
Enterprise Airflow deployments with Kubernetes executors, custom operators, and multi-tenant configurations.
Enterprise Airflow Features
- Kubernetes executor for scaling
- Custom operators for agents
- Multi-tenant isolation
- External trigger integration
- Advanced monitoring with Prometheus