Multi-agent systems consist of multiple intelligent agents that interact and collaborate to solve complex problems that would be difficult for a single agent to handle.
Example: A customer service system where one agent handles inquiries, another processes orders, and a third manages complaints - all working together seamlessly.
Learn to design agent architectures with specialized roles, communication protocols, and coordination mechanisms for efficient task distribution and problem-solving.
class Agent:
def __init__(self, name, role):
self.name = name
self.role = role
self.messages = []
def communicate(self, target, message):
target.receive_message(self, message)
def receive_message(self, sender, message):
self.messages.append({
'from': sender.name,
'message': message
})
researcher = Agent("Researcher", "Information gathering")
analyzer = Agent("Analyzer", "Data processing")
writer = Agent("Writer", "Content generation")
Implement sophisticated multi-agent architectures with dynamic role assignment, emergent behaviors, and self-organizing capabilities for complex autonomous systems.
from langgraph.graph import StateGraph, END
from typing import TypedDict, List, Annotated
import operator
class AgentState(TypedDict):
messages: Annotated[List[str], operator.add]
current_agent: str
task_queue: List[str]
results: dict
class MultiAgentOrchestrator:
def __init__(self):
self.graph = StateGraph(AgentState)
self.agents = {}
self._build_workflow()
def _build_workflow(self):
self.graph.add_node("coordinator", self.coordinator_agent)
self.graph.add_node("specialist", self.specialist_agent)
self.graph.add_node("validator", self.validator_agent)
self.graph.add_conditional_edges(
"coordinator",
self.route_task,
{
"specialist": "specialist",
"validator": "validator",
"end": END
}
)
def route_task(self, state):
if state["task_queue"]:
task = state["task_queue"][0]
if "validate" in task:
return "validator"
else:
return "specialist"
return "end"