⚡ vLLM - High-Performance LLM Serving
What is vLLM?
Meaning: Fast and easy-to-use library for LLM inference and serving, optimized for high throughput.
Example: Company serves GPT models 24x faster using vLLM's PagedAttention → reduces GPU memory usage by 50%.
Key Features:
- PagedAttention: Efficient memory management
- Continuous Batching: Dynamic request batching
- Quantization: INT4/INT8 support
- Tensor Parallelism: Multi-GPU serving
- OpenAI Compatible: Drop-in replacement API
# vLLM server setup from vllm import LLM, SamplingParams # Initialize model llm = LLM( model="meta-llama/Llama-2-7b-hf", tensor_parallel_size=2, # Use 2 GPUs dtype="half" # FP16 for efficiency ) # Batch inference prompts = ["Tell me about AI", "What is ML?"] sampling_params = SamplingParams( temperature=0.8, max_tokens=100 ) outputs = llm.generate(prompts, sampling_params) for output in outputs: print(output.outputs[0].text)
Performance Benchmarks:
- 24x throughput vs HuggingFace Transformers
- 2.2x throughput vs TGI (Text Generation Inference)
- 50% less GPU memory with PagedAttention
- Serves 100+ concurrent users on single A100
🎯 Ray Serve - Scalable ML Serving
What is Ray Serve?
Meaning: Scalable model serving library built on Ray, supporting complex ML pipelines and multi-model deployments.
Example: E-commerce platform serves ensemble of 5 models → Ray Serve handles load balancing → auto-scales from 10 to 1000 QPS.
Key Capabilities:
- Framework Agnostic: PyTorch, TensorFlow, Scikit-learn
- Composition: Chain multiple models
- Auto-scaling: Dynamic replica management
- Batching: Automatic request batching
- A/B Testing: Traffic splitting
# Ray Serve deployment import ray from ray import serve import torch # Define deployment @serve.deployment( num_replicas=3, ray_actor_options={"num_gpus": 1} ) class ModelServer: def __init__(self): self.model = torch.load("model.pt") async def __call__(self, request): data = await request.json() with torch.no_grad(): prediction = self.model(data["input"]) return {"prediction": prediction.tolist()} # Deploy serve.run(ModelServer.bind())
Use Cases:
- Multi-model ensembles
- Real-time feature engineering
- Model pipeline orchestration
- Hybrid CPU-GPU workloads
🚀 TensorRT - NVIDIA GPU Optimization
What is TensorRT?
Meaning: NVIDIA's high-performance deep learning inference library that optimizes models for deployment on NVIDIA GPUs.
Example: Computer vision model runs 5x faster after TensorRT optimization → latency drops from 50ms to 10ms on T4 GPU.
Optimization Techniques:
- Layer Fusion: Combines ops to reduce memory bandwidth
- Precision Calibration: INT8/FP16 quantization
- Kernel Auto-tuning: Platform-specific optimization
- Dynamic Tensor Memory: Efficient memory reuse
- Multi-Stream Execution: Parallel inference
# TensorRT optimization import tensorrt as trt import torch import torch2trt # Convert PyTorch model to TensorRT model = torchvision.models.resnet50(pretrained=True).eval().cuda() x = torch.ones((1, 3, 224, 224)).cuda() # Optimize with FP16 model_trt = torch2trt.torch2trt( model, [x], fp16_mode=True, max_batch_size=32 ) # Benchmark import time warmup = 50 iterations = 1000 for _ in range(warmup): y_trt = model_trt(x) t0 = time.time() for _ in range(iterations): y_trt = model_trt(x) t1 = time.time() print(f"TensorRT FPS: {iterations / (t1 - t0):.1f}")
Performance Gains:
- ResNet-50: 5.4x speedup with INT8
- BERT: 4.2x speedup with FP16
- GPT-2: 3.7x speedup
- 70% reduction in latency
🔄 ONNX Runtime - Cross-Platform Inference
What is ONNX Runtime?
Meaning: Cross-platform, high-performance ML inference engine for ONNX (Open Neural Network Exchange) models.
Example: Same model runs on cloud (GPU), edge devices (CPU), and mobile (NPU) using ONNX Runtime → write once, deploy anywhere.
Key Features:
- Hardware Agnostic: CPU, GPU, NPU, TPU support
- Framework Interop: PyTorch, TensorFlow, Scikit-learn
- Optimizations: Graph optimization, quantization
- Language Bindings: Python, C++, C#, Java, JavaScript
- Mobile Support: iOS, Android deployment
# ONNX Runtime inference import onnxruntime as ort import numpy as np # Load ONNX model session = ort.InferenceSession( "model.onnx", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'] ) # Prepare input input_name = session.get_inputs()[0].name input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) # Run inference result = session.run(None, {input_name: input_data}) output = result[0] # Quantize for edge deployment from onnxruntime.quantization import quantize_dynamic quantize_dynamic( "model.onnx", "model_int8.onnx", weight_type=QuantType.QInt8 )
Deployment Scenarios:
- Cloud: Azure ML, AWS SageMaker
- Edge: IoT devices, Raspberry Pi
- Mobile: iOS CoreML, Android NNAPI
- Browser: ONNX.js, WebAssembly
📊 Framework Comparison
Choosing the Right Framework
Decision Matrix:
Framework | Best For | Hardware | Complexity |
---|---|---|---|
vLLM | LLMs, Text Generation | NVIDIA GPUs | Low |
Ray Serve | Complex Pipelines | CPU/GPU Mix | Medium |
TensorRT | Low Latency | NVIDIA Only | High |
ONNX Runtime | Cross-Platform | Any | Low |
Performance Benchmarks (Relative):
- Throughput King: vLLM (for LLMs)
- Lowest Latency: TensorRT
- Most Flexible: Ray Serve
- Best Compatibility: ONNX Runtime
Integration Examples:
- FastAPI + vLLM: REST API for LLMs
- Kubernetes + Ray Serve: Scalable ML platform
- Triton + TensorRT: Multi-model server
- Azure ML + ONNX: Cloud deployment
✅ Best Practices
Production Serving Guidelines
Architecture Patterns:
- Model Server: Dedicated inference service
- Sidecar Pattern: Model alongside application
- Gateway Pattern: Central routing to models
- Ensemble Pattern: Multiple models voting
Optimization Checklist:
- ✅ Profile model bottlenecks first
- ✅ Use appropriate batch sizes
- ✅ Enable GPU memory pooling
- ✅ Implement request queuing
- ✅ Set up health checks and monitoring
- ✅ Plan for model versioning
- ✅ Test failover scenarios
Common Pitfalls:
- Not warming up models before serving
- Ignoring memory leaks in long-running services
- Over-optimizing without profiling
- Missing request timeout configuration
- No strategy for model updates
Module 4: AI in Production Topics
- ML Lifecycle
- Serving Frameworks
- MLOps & AIOps
- GPU Orchestration