Understanding the Model Context Protocol

The Model Context Protocol (MCP) is an open standard that enables seamless communication between AI assistants and external data sources or tools. Build powerful integrations that extend AI capabilities with your custom servers.

🚀 Quick Start

Get up and running in minutes with our TypeScript and Python SDKs

🔌 Universal Integration

Connect any data source, API, or service to AI assistants

⚡ Real-time Communication

Bidirectional streaming for responsive interactions

📦
Getting Started with MCP Development

Follow this step-by-step workflow to create your first MCP server:

1
Install Dependencies

Set up your development environment with the MCP SDK

2
Create Server Instance

Initialize your MCP server with proper configuration

3
Define Tools & Resources

Register the capabilities your server provides

4
Implement Handlers

Write logic for processing requests and responses

5
Test & Deploy

Validate functionality and deploy to production

# Basic MCP Server in Python
from mcp.server import Server, stdio_server
from mcp.server.models import InitializationOptions
from mcp.types import Tool, Resource, TextContent
import asyncio

class MyMCPServer:
    def __init__(self):
        self.server = Server("my-mcp-server")
        self.setup_handlers()
    
    def setup_handlers(self):
        """Register server capabilities"""
        
        @self.server.list_tools()
        async def handle_list_tools():
            return [
                Tool(
                    name="get_data",
                    description="Retrieve data from source",
                    inputSchema={
                        "type": "object",
                        "properties": {
                            "query": {
                                "type": "string",
                                "description": "Data query"
                            }
                        },
                        "required": ["query"]
                    }
                )
            ]
        
        @self.server.call_tool()
        async def handle_call_tool(name: str, arguments: dict):
            if name == "get_data":
                query = arguments.get("query")
                # Implement your logic here
                result = await fetch_data(query)
                return [TextContent(text=result)]
            
            raise ValueError(f"Unknown tool: {name}")
    
    async def run(self):
        """Start the MCP server"""
        async with stdio_server() as (read_stream, write_stream):
            await self.server.run(
                read_stream,
                write_stream,
                InitializationOptions(
                    server_name="my-mcp-server",
                    server_version="1.0.0"
                )
            )

# Start server
if __name__ == "__main__":
    server = MyMCPServer()
    asyncio.run(server.run())
                
Important: Always validate and sanitize inputs from AI assistants to prevent security vulnerabilities in your MCP server implementation.
🛠️
Implementing Advanced Features

Enhance your MCP server with advanced capabilities for production use:

1
Resource Management

Expose structured data and documents to AI assistants

2
Prompt Templates

Provide reusable prompt patterns for common tasks

3
Sampling & Completion

Offer custom completion suggestions to AI models

4
Error Handling

Implement robust error recovery and logging

// Advanced MCP Server in TypeScript
import { Server } from '@modelcontextprotocol/sdk/server/index.js';
import { StdioServerTransport } from '@modelcontextprotocol/sdk/server/stdio.js';
import {
  CallToolRequestSchema,
  ListResourcesRequestSchema,
  ListPromptsRequestSchema,
  GetPromptRequestSchema,
} from '@modelcontextprotocol/sdk/types.js';

class AdvancedMCPServer {
  private server: Server;
  private db: DatabaseConnection;
  private cache: CacheManager;

  constructor() {
    this.server = new Server(
      {
        name: 'advanced-mcp-server',
        version: '1.0.0',
      },
      {
        capabilities: {
          resources: {},
          tools: {},
          prompts: {},
        },
      }
    );
    
    this.setupHandlers();
  }

  private setupHandlers(): void {
    // List available resources
    this.server.setRequestHandler(ListResourcesRequestSchema, async () => ({
      resources: [
        {
          uri: 'db://users',
          name: 'User Database',
          description: 'Access to user information',
          mimeType: 'application/json',
        },
        {
          uri: 'api://analytics',
          name: 'Analytics API',
          description: 'Performance metrics and analytics',
          mimeType: 'application/json',
        },
      ],
    }));

    // List available prompts
    this.server.setRequestHandler(ListPromptsRequestSchema, async () => ({
      prompts: [
        {
          name: 'analyze_data',
          description: 'Analyze dataset with specified criteria',
          arguments: [
            {
              name: 'dataset',
              description: 'Dataset identifier',
              required: true,
            },
            {
              name: 'criteria',
              description: 'Analysis criteria',
              required: false,
            },
          ],
        },
      ],
    }));

    // Handle prompt requests
    this.server.setRequestHandler(GetPromptRequestSchema, async (request) => {
      if (request.params.name === 'analyze_data') {
        const dataset = request.params.arguments?.dataset || 'default';
        const criteria = request.params.arguments?.criteria || 'standard';
        
        return {
          prompt: {
            name: 'analyze_data',
            description: 'Data analysis prompt',
            messages: [
              {
                role: 'user',
                content: {
                  type: 'text',
                  text: `Analyze the ${dataset} dataset using ${criteria} criteria.
                        Focus on: trends, anomalies, and actionable insights.`,
                },
              },
            ],
          },
        };
      }
      
      throw new Error(`Unknown prompt: ${request.params.name}`);
    });

    // Handle tool calls
    this.server.setRequestHandler(CallToolRequestSchema, async (request) => {
      const { name, arguments: args } = request.params;
      
      switch (name) {
        case 'query_database':
          return await this.queryDatabase(args);
          
        case 'cache_operation':
          return await this.handleCache(args);
          
        case 'execute_workflow':
          return await this.executeWorkflow(args);
          
        default:
          throw new Error(`Unknown tool: ${name}`);
      }
    });
  }

  private async queryDatabase(args: any): Promise {
    // Implement database query logic
    const query = args.query;
    const params = args.params || [];
    
    try {
      const result = await this.db.query(query, params);
      return {
        content: [
          {
            type: 'text',
            text: JSON.stringify(result, null, 2),
          },
        ],
      };
    } catch (error) {
      return {
        content: [
          {
            type: 'text',
            text: `Database error: ${error.message}`,
          },
        ],
        isError: true,
      };
    }
  }

  async run(): Promise {
    const transport = new StdioServerTransport();
    await this.server.connect(transport);
    console.error('Advanced MCP Server running on stdio');
  }
}

// Start server
const server = new AdvancedMCPServer();
server.run().catch(console.error);
                
🔗
Integration Patterns

Connect your MCP server to various data sources and services:

PostgreSQL
MongoDB
Redis
REST APIs
GraphQL
WebSockets
File Systems
Cloud Storage
Integration Type Use Case Complexity Performance
Database Structured data queries Medium High
REST API External service integration Low Medium
File System Local file operations Low High
Message Queue Async processing High High
WebSocket Real-time updates Medium Very High
📋 MCP Server Templates

Start quickly with our pre-built server templates:

🚀
Production Deployment

Deploy your MCP server with enterprise-grade reliability:

1
Environment Configuration

Set up environment variables and secrets management

2
Containerization

Package your server with Docker for consistent deployment

3
Monitoring & Logging

Implement comprehensive observability

4
Scaling Strategy

Configure auto-scaling and load balancing

5
Security Hardening

Apply security best practices and authentication

# Docker deployment configuration
FROM node:20-alpine

WORKDIR /app

# Install dependencies
COPY package*.json ./
RUN npm ci --only=production

# Copy server code
COPY . .

# Build TypeScript
RUN npm run build

# Security: Run as non-root user
USER node

# Health check
HEALTHCHECK --interval=30s --timeout=3s --start-period=5s --retries=3 \
  CMD node healthcheck.js

# Start server
CMD ["node", "dist/index.js"]

---
# docker-compose.yml
version: '3.8'

services:
  mcp-server:
    build: .
    container_name: mcp-server
    environment:
      - NODE_ENV=production
      - DB_HOST=${DB_HOST}
      - DB_PASSWORD=${DB_PASSWORD}
      - REDIS_URL=${REDIS_URL}
    ports:
      - "3000:3000"
    volumes:
      - ./config:/app/config:ro
    networks:
      - mcp-network
    deploy:
      replicas: 3
      restart_policy:
        condition: on-failure
        delay: 5s
        max_attempts: 3

  redis:
    image: redis:alpine
    container_name: mcp-redis
    volumes:
      - redis-data:/data
    networks:
      - mcp-network

  postgres:
    image: postgres:15
    container_name: mcp-db
    environment:
      - POSTGRES_DB=mcp
      - POSTGRES_PASSWORD=${DB_PASSWORD}
    volumes:
      - postgres-data:/var/lib/postgresql/data
    networks:
      - mcp-network

networks:
  mcp-network:
    driver: bridge

volumes:
  redis-data:
  postgres-data:
                
Production Checklist:
  • Implement authentication and authorization
  • Set up rate limiting and request validation
  • Configure SSL/TLS encryption
  • Enable comprehensive logging and monitoring
  • Implement graceful shutdown handling
  • Set up automated testing and CI/CD
  • Configure backup and disaster recovery
  • Document API endpoints and usage

Best Practices

Input Validation

Always validate and sanitize inputs from AI assistants to prevent injection attacks and ensure data integrity.

Error Handling

Implement comprehensive error handling with meaningful error messages for debugging and user feedback.

Performance Optimization

Use caching, connection pooling, and async operations to handle high request volumes efficiently.

Versioning

Maintain backward compatibility and use semantic versioning for your MCP server releases.

Testing Strategy

Implement unit tests, integration tests, and end-to-end tests for reliable server operation.

Documentation

Provide clear documentation for tools, resources, and prompts to help AI assistants use your server effectively.

Security Notice: Never expose sensitive credentials or API keys in your MCP server responses. Use environment variables and secure secret management systems.