🤖 RAG Chatbot Development

Part of Module 7: Hands-On Projects

Learn how to build production-ready Retrieval-Augmented Generation (RAG) chatbots from scratch. This comprehensive guide covers document processing, vector storage, retrieval optimization, and deployment strategies for creating intelligent conversational AI systems that leverage your organization's data.

🏗️ RAG Architecture Overview

Core RAG Components

A RAG system combines the power of large language models with your own data to provide accurate, contextual responses. Understanding each component is crucial for building effective systems.

  • Document Ingestion: Processing and chunking documents
  • Embedding Generation: Converting text to vectors
  • Vector Storage: Efficient similarity search
  • Retrieval Pipeline: Finding relevant context
  • Response Generation: LLM-powered answers

Basic RAG Pipeline Implementation

# Basic RAG Pipeline
from langchain import VectorStore, Embeddings, LLM
from langchain.text_splitter import RecursiveCharacterTextSplitter
from typing import List, Dict, Optional

class RAGChatbot:
    def __init__(self, model_name: str = "gpt-4"):
        self.embeddings = Embeddings()
        self.vectorstore = VectorStore()
        self.llm = LLM(model_name)
        self.text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=1000,
            chunk_overlap=200
        )
    
    def ingest_documents(self, documents: List[str]) -> int:
        """Process and store documents in vector database"""
        chunks = self.text_splitter.split_documents(documents)
        embeddings = self.embeddings.encode(chunks)
        self.vectorstore.add(embeddings, chunks)
        return len(chunks)
    
    def query(self, question: str, k: int = 5) -> tuple:
        """Retrieve relevant context and generate response"""
        # Retrieve relevant context
        context = self.vectorstore.search(question, k=k)
        
        # Build prompt with context
        prompt = self._build_prompt(question, context)
        
        # Generate response with LLM
        response = self.llm.generate(prompt)
        
        return response, context
    
    def _build_prompt(self, question: str, context: List[str]) -> str:
        """Build prompt with retrieved context"""
        context_str = "\n".join(context)
        return f"""Based on the following context:
{context_str}

Question: {question}
Answer:"""

📚 Document Processing Strategies

Smart Chunking Techniques

Effective document chunking is crucial for RAG performance. Choose the right strategy based on your content type and use case requirements.

Advanced Chunking Implementation

class SmartChunker:
    def __init__(self):
        self.strategies = {
            'semantic': self.semantic_chunking,
            'sliding_window': self.sliding_window,
            'document_structure': self.structure_aware
        }
    
    def semantic_chunking(self, text: str, max_size: int = 500):
        """Split based on semantic boundaries"""
        # Use sentence transformers for semantic similarity
        sentences = text.split('.')
        chunks = []
        current_chunk = []
        
        for sentence in sentences:
            current_chunk.append(sentence)
            if len(' '.join(current_chunk)) > max_size:
                chunks.append(' '.join(current_chunk))
                current_chunk = []
        
        return chunks
    
    def sliding_window(self, text: str, window_size: int = 500, stride: int = 250):
        """Overlapping window approach for better context preservation"""
        chunks = []
        for i in range(0, len(text), stride):
            chunk = text[i:i + window_size]
            if chunk:
                chunks.append(chunk)
        return chunks

💾 Vector Database Selection

Popular Vector Databases

Choose the right vector database based on your scale, performance requirements, and infrastructure preferences.

  • Pinecone: Managed, scalable, production-ready
  • Weaviate: Open-source, hybrid search capabilities
  • ChromaDB: Lightweight, developer-friendly
  • Qdrant: High-performance, Rust-based
  • Milvus: Cloud-native, highly scalable

Best Practices for Production RAG

  • Use hybrid search (vector + keyword) for better results
  • Implement re-ranking for improved relevance
  • Monitor embedding drift over time
  • Cache frequently accessed embeddings
  • Implement proper error handling and fallbacks
  • Use metadata filtering for better precision
  • Implement user feedback loops for continuous improvement

🚀 Deployment Architecture

Production Deployment Strategy

Deploy your RAG chatbot with proper API design, monitoring, and scalability considerations.

FastAPI Production Deployment

from fastapi import FastAPI, HTTPException, BackgroundTasks
from pydantic import BaseModel, Field
import asyncio
from datetime import datetime

app = FastAPI(title="RAG Chatbot API")

class Query(BaseModel):
    question: str = Field(..., description="User question")
    context_size: int = Field(5, description="Number of context chunks")
    session_id: Optional[str] = None

class Response(BaseModel):
    answer: str
    sources: List[Dict]
    confidence: float
    response_time: float

@app.post("/query", response_model=Response)
async def query_rag(query: Query, background_tasks: BackgroundTasks):
    """Process user query through RAG pipeline"""
    start_time = datetime.now()
    
    try:
        # Get response from RAG chatbot
        answer, sources = await rag_chatbot.query(
            query.question, 
            k=query.context_size
        )
        
        # Calculate confidence score
        confidence = calculate_confidence(answer, sources)
        
        # Log for monitoring
        background_tasks.add_task(
            log_query, 
            query.session_id, 
            query.question, 
            answer
        )
        
        response_time = (datetime.now() - start_time).total_seconds()
        
        return Response(
            answer=answer,
            sources=sources,
            confidence=confidence,
            response_time=response_time
        )
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

@app.get("/health")
async def health_check():
    """Health check endpoint"""
    return {"status": "healthy", "timestamp": datetime.now()}

Module 7: Hands-on Projects