Learn how to build production-ready Retrieval-Augmented Generation (RAG) chatbots from scratch. This comprehensive guide covers document processing, vector storage, retrieval optimization, and deployment strategies for creating intelligent conversational AI systems that leverage your organization's data.
🏗️ RAG Architecture Overview
Core RAG Components
A RAG system combines the power of large language models with your own data to provide accurate, contextual responses. Understanding each component is crucial for building effective systems.
- Document Ingestion: Processing and chunking documents
- Embedding Generation: Converting text to vectors
- Vector Storage: Efficient similarity search
- Retrieval Pipeline: Finding relevant context
- Response Generation: LLM-powered answers
Basic RAG Pipeline Implementation
# Basic RAG Pipeline from langchain import VectorStore, Embeddings, LLM from langchain.text_splitter import RecursiveCharacterTextSplitter from typing import List, Dict, Optional class RAGChatbot: def __init__(self, model_name: str = "gpt-4"): self.embeddings = Embeddings() self.vectorstore = VectorStore() self.llm = LLM(model_name) self.text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200 ) def ingest_documents(self, documents: List[str]) -> int: """Process and store documents in vector database""" chunks = self.text_splitter.split_documents(documents) embeddings = self.embeddings.encode(chunks) self.vectorstore.add(embeddings, chunks) return len(chunks) def query(self, question: str, k: int = 5) -> tuple: """Retrieve relevant context and generate response""" # Retrieve relevant context context = self.vectorstore.search(question, k=k) # Build prompt with context prompt = self._build_prompt(question, context) # Generate response with LLM response = self.llm.generate(prompt) return response, context def _build_prompt(self, question: str, context: List[str]) -> str: """Build prompt with retrieved context""" context_str = "\n".join(context) return f"""Based on the following context: {context_str} Question: {question} Answer:"""
📚 Document Processing Strategies
Smart Chunking Techniques
Effective document chunking is crucial for RAG performance. Choose the right strategy based on your content type and use case requirements.
Advanced Chunking Implementation
class SmartChunker: def __init__(self): self.strategies = { 'semantic': self.semantic_chunking, 'sliding_window': self.sliding_window, 'document_structure': self.structure_aware } def semantic_chunking(self, text: str, max_size: int = 500): """Split based on semantic boundaries""" # Use sentence transformers for semantic similarity sentences = text.split('.') chunks = [] current_chunk = [] for sentence in sentences: current_chunk.append(sentence) if len(' '.join(current_chunk)) > max_size: chunks.append(' '.join(current_chunk)) current_chunk = [] return chunks def sliding_window(self, text: str, window_size: int = 500, stride: int = 250): """Overlapping window approach for better context preservation""" chunks = [] for i in range(0, len(text), stride): chunk = text[i:i + window_size] if chunk: chunks.append(chunk) return chunks
💾 Vector Database Selection
Popular Vector Databases
Choose the right vector database based on your scale, performance requirements, and infrastructure preferences.
- Pinecone: Managed, scalable, production-ready
- Weaviate: Open-source, hybrid search capabilities
- ChromaDB: Lightweight, developer-friendly
- Qdrant: High-performance, Rust-based
- Milvus: Cloud-native, highly scalable
Best Practices for Production RAG
- Use hybrid search (vector + keyword) for better results
- Implement re-ranking for improved relevance
- Monitor embedding drift over time
- Cache frequently accessed embeddings
- Implement proper error handling and fallbacks
- Use metadata filtering for better precision
- Implement user feedback loops for continuous improvement
🚀 Deployment Architecture
Production Deployment Strategy
Deploy your RAG chatbot with proper API design, monitoring, and scalability considerations.
FastAPI Production Deployment
from fastapi import FastAPI, HTTPException, BackgroundTasks from pydantic import BaseModel, Field import asyncio from datetime import datetime app = FastAPI(title="RAG Chatbot API") class Query(BaseModel): question: str = Field(..., description="User question") context_size: int = Field(5, description="Number of context chunks") session_id: Optional[str] = None class Response(BaseModel): answer: str sources: List[Dict] confidence: float response_time: float @app.post("/query", response_model=Response) async def query_rag(query: Query, background_tasks: BackgroundTasks): """Process user query through RAG pipeline""" start_time = datetime.now() try: # Get response from RAG chatbot answer, sources = await rag_chatbot.query( query.question, k=query.context_size ) # Calculate confidence score confidence = calculate_confidence(answer, sources) # Log for monitoring background_tasks.add_task( log_query, query.session_id, query.question, answer ) response_time = (datetime.now() - start_time).total_seconds() return Response( answer=answer, sources=sources, confidence=confidence, response_time=response_time ) except Exception as e: raise HTTPException(status_code=500, detail=str(e)) @app.get("/health") async def health_check(): """Health check endpoint""" return {"status": "healthy", "timestamp": datetime.now()}
Module 7: Hands-on Projects
- RAG chatbot development
- LLM deployment
- Observability implementation
- Multi-agent workflows